SignificanceRice architecture is an important agronomic trait for determining yield; however, the complexity of this trait makes it difficult to elucidate the molecular mechanisms. This study applied a strategy of using principal components (PCs) as dependent variables for a genome-wide association study (GWAS). SPINDLY was identified to regulate rice architecture by suppressing gibberellin (GA) signaling. Further study using GA-signaling mutants confirmed that levels of GA responsiveness regulate rice architecture, suggesting that the utilization of a favorable SPINDLY allele will improve crop productivity. The strategy presented in this study of performing GWAS using PC scores will provide valuable information for plant genetics and will improve our understanding of complex traits at the molecular level.
ObjectiveAlthough immunoglobulin A (IgA) is abundantly expressed in the gut and known to be an important component of mucosal barriers against luminal pathogens, its precise function remains unclear. Therefore, we tried to elucidate the effect of IgA on gut homeostasis maintenance and its mechanism.DesignWe generated various IgA mutant mouse lines using the CRISPR/Cas9 genome editing system. Then, we evaluated the effect on the small intestinal homeostasis, pathology, intestinal microbiota, cytokine production, and immune cell activation using intravital imaging.ResultsWe obtained two lines, with one that contained a <50 base pair deletion in the cytoplasmic region of the IgA allele (IgA tail-mutant; IgAtm/tm) and the other that lacked the most constant region of the IgH α chain, which resulted in the deficiency of IgA production (IgA−/−). IgA−/− exhibited spontaneous inflammation in the ileum but not the other parts of the gastrointestinal tract. Associated with this, there were significantly increased lamina propria CD4+ T cells, elevated productions of IFN-γ and IL-17, increased ileal segmented filamentous bacteria and skewed intestinal microflora composition. Intravital imaging using Ca2+ biosensor showed that IgA−/− had elevated Ca2+ signalling in Peyer’s patch B cells. On the other hand, IgAtm/tm seemed to be normal, suggesting that the IgA cytoplasmic tail is dispensable for the prevention of the intestinal disorder.ConclusionIgA plays an important role in the mucosal homeostasis associated with the regulation of intestinal microbiota and protection against mucosal inflammation especially in the ileum.
Recently, we found a novel function of the lactic acid bacterium Tetragenococcus halophilus derived from miso, a fermented soy paste, that induces interleukin (IL)-22 production in B cells preferentially. IL-22 plays a critical role in barrier functions in the gut and skin. We further screened other bacteria species, namely, Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Weissella, Pediococcus, and Bacillus, in addition to Tetragenococcus and found that some of them possessed robust IL-22-inducible function in B cells in vitro. This process resulted in the augmented expression of activation markers CD86 and CD69 on B and T cells, respectively. However, these observations were not correlated with IL-22 production. We isolated Bacillus coagulans sc-09 from miso and determined it to be the best strain to induce robust IL-22 production in B cells. Furthermore, feeding B. coagulans sc-09 to mice augmented the barrier function of the skin regardless of gut microbiota.
In Japan, there is a long history of consumption of miso, a fermented soybean paste, which possesses beneficial effects on human health. However, the mechanism behind these effects is not fully understood. To clarify the effects of miso on immune cells, we evaluated its immunomodulatory activity in mice. Miso did not alter the percentage of B and T cells in the spleen; however, it increased CD69+ B cells, germinal center B cells and regulatory T cells. Anti-DNA immunoglobulin M antibodies, which prevent autoimmune disease, were increased following ingestion of miso. Transcriptome analysis of mouse spleen cells cultured with miso and its raw material revealed that the expression of genes, including interleukin (IL)-10, IL-22 and CD86, was upregulated. Furthermore, intravital imaging of the small intestinal epithelium using a calcium biosensor mouse line indicated that miso induced Ca2+ signaling in a manner similar to that of probiotics. Thus, ingestion of miso strengthened the immune response and tolerance in mice. These results appear to account, at least in part, to the salubrious effects of miso.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.