In plants and animals, small peptide ligands that signal in cell-cell communication have been suggested to be a crucial component of development. A bioassay of single-cell transdifferentation demonstrates that a dodecapeptide with two hydroxyproline residues is the functional product of genes from the CLE family, which includes CLAVATA3 in Arabidopsis. The dodecapeptide suppresses xylem cell development at a concentration of 10(-11) M and promotes cell division. An application, corresponding to all 26 Arabidopsis CLE protein family members, of synthetic dodecapeptides reveals two counteracting signaling pathways involved in stem cell fate.
Higher organisms possess mechanisms to maintain stem cells' proliferative and pluripotent states in stem cell niches [1]. Plants possess two types of stem cell niches in the root and shoot apical meristems, where regulatory interactions exist between stem cells and organizing cells. Recent studies provided new insights into the molecular mechanism of stem cell maintenance [2-4]. However, earlier and more essential developmental events such as the acquisition of stem cell proliferative activity are still unknown. In vascular tissues, procambial cells function as stem cells and differentiate into xylem, phloem, and procambium. Procambial cell proliferation starts at root apical meristem (RAM) postembryonically; therefore, procambial cell development in RAM is a good model for investigating the regulation of stem cell proliferation. LONESOME HIGHWAY (LHW) and TARGET OF MONOPTEROS5 (TMO5), as well as its homolog, TMO5-LIKE1 (T5L1), encode bHLH proteins that function as heterodimers (LHW-TMO5 and LHW-T5L1) in vascular tissue organization [5-7]. LHW-T5L1 promotes vascular-cell-specific proliferation in RAM [7]. Here, we demonstrate that LHW-T5L1 promotes expression of key cytokinin production genes, including LONELY GUY3 (LOG3) and LOG4, in xylem precursor cells, resulting in elevated cytokinin levels in the surrounding cells. LHW-T5L1 can also promote expression of AHP6, which suppresses cytokinin signaling and then maintains xylem precursor cells at a nondividing state. Our results indicate that LHW-T5L1 establishes xylem precursor cells as a signal center that promotes procambial-cell-specific proliferation through cytokinin response.
Arabidopsis sol2 mutants showed CLV3 peptide resistance. Twenty-six synthetic CLE peptides were examined in the clv1, clv2 and sol2 mutants. sol2 showed different levels of resistance to the various peptides, and the spectrum of peptide resistance was quite similar to that of clv2. SOL2 encoded a receptor-like kinase protein which is identical to CORYNE (CRN). GeneChip analysis revealed that the expression of several genes was altered in the sol2 root tip. Here, we suggest that SOL2, together with CLV2, plays an important role in the regulation of root meristem development through the CLE signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.