The ideal mechanical strength and critical porosity of calcium phosphate cement (CPC) were estimated to help determine ways to improve its properties. CPC at various porosities was made by packing CPC paste, at various powder-to-liquid (P/L) ratios (2.0-6.0), into a mold under various pressures (0-173 MPa). The mechanical strength of CPC, in terms of diametral tensile strength (DTS), increased with decreases in porosity. Intercrystalline fracture was observed in specimens made without the application of pressure, while fracture within the crystals increased with the packing pressure. These observations support the application of the relationship between DTS and porosity in fractographic equations. The ideal wet DTS and critical porosity of CPC were estimated to be 102 MPa and 63%, respectively. The minimum porosity of the currently used CPC was approximately 26-28%, even when it was packed under 173 MPa, and the maximum DTS value was thus approximately 13-14 MPa. Because reducing the porosity of currently used CPC would be difficult, we conclude that in CPC-related research, we should focus on ways in which to accelerate bone-replacing behavior, in addition to improving the mechanical strength of CPC.
Although block- or granular-type sintered hydroxyapatite are known to show excellent tissue responses and good osteoconductivity, apatite powder elicits inflammatory response. For the fabrication of hydroxyapatite block or granules, sintering is commonly employed. However, the inorganic component of bone and tooth is not high crystalline hydroxyapatite but low crystalline B-type carbonate apatite. Unfortunately, carbonate apatite powder cannot be sintered due to its instability at high temperature. Another method to fabricate apatite block and/or granule is through phase transformation based on dissolution-precipitation reactions using a precursor phase. This reaction basically is the same as a setting and hardening reaction of calcium sulfate or plaster. In this paper, apatite block fabrication methods by phase transformation based on dissolution-precipitation reactions will be discussed, with a focus on the similarity of the setting and hardening reaction of calcium sulfate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.