The Mini-International Neuropsychiatric Interview (MINI) is a short, structured diagnostic interview used as a tool to diagnose 16 axis I (Diagnostic and Statistical Manual) DSM-IV disorders and one personality disorder. Its original version was developed by Sheehan and Lecrubier. We translated the MINI into Japanese, and investigated the reliability and validity of the Japanese version of MINI. Eighty-two subjects participated in the validation of the MINI versus the Structured Clinical Interview for DSM-III-R (SCID-P). One hundred and sixty-nine subjects participated in the validation of the MINI versus an expert's professional opinion. Seventy-seven subjects were interviewed by two investigators and subsequently readministered by a third interviewer blind to the results of initial evaluation 1-2 days later. In general, kappa values indicated good or excellent agreement between MINI and SCID-P diagnoses. Kappa values indicated poor agreement between MINI and expert's diagnoses for most diagnoses. Interrater and test-retest reliabilities were good or excellent. The mean durations of the interview were 18.8 min for MINI and 45.4 min for corresponding sections of SCID-P. Overall, the results suggest that the MINI Japanese version succeeds in reliably and validly eliciting symptom criteria used in making DSM-III-R diagnoses, and can be performed in less than half the time required for the SCID-P.
Genetic variation in dysbindin (DTNBP1: dystrobrevin-binding protein 1) has recently been shown to be associated with schizophrenia. The dysbindin gene is located at chromosome 6p22.3, one of the most promising susceptibility loci in schizophrenia linkage studies. We attempted to replicate this association in a Japanese sample of 670 patients with schizophrenia and 588 controls. We found a nominally significant association with schizophrenia for four single nucleotide polymorphisms and stronger evidence for association in a multi-marker haplotype analysis (P = 0.00028). We then explored functions of dysbindin protein in primary cortical neuronal culture. Overexpression of dysbindin induced the expression of two pre-synaptic proteins, SNAP25 and synapsin I, and increased extracellular basal glutamate levels and release of glutamate evoked by high potassium. Conversely, knockdown of endogenous dysbindin protein by small interfering RNA (siRNA) resulted in the reduction of pre-synaptic protein expression and glutamate release, suggesting that dysbindin might influence exocytotic glutamate release via upregulation of the molecules in pre-synaptic machinery. The overexpression of dysbindin increased phosphorylation of Akt protein and protected cortical neurons against neuronal death due to serum deprivation and these effects were blocked by LY294002, a phosphatidylinositol 3-kinase (PI3-kinase) inhibitor. SiRNA-mediated silencing of dysbindin protein diminished Akt phosphorylation and facilitated neuronal death induced by serum deprivation, suggesting that dysbindin promotes neuronal viability through PI3-kinase-Akt signaling. Genetic variants associated with impairments of these functions of dysbindin could play an important role in the pathogenesis of schizophrenia.
Disrupted-in-schizophrenia 1 (DISC1), identified in a pedigree with a familial psychosis with the chromosome translocation (1:11), is a putative susceptibility gene for psychoses such as schizophrenia and bipolar disorder. Although there are a number of patients with major depressive disorder (MDD) in the family members with the chromosome translocation, the possible association with MDD has not yet been studied. We therefore performed an association study of the DISC1 gene with MDD and schizophrenia. We found that Cys704 allele of the Ser704Cys single-nucleotide polymorphism (SNP) was associated with an increased risk of developing MDD (P=0.005, odds ratio=1.46) and stronger evidence for association in a multi-marker haplotype analysis containing this SNP (P=0.002). We also explored possible impact of Ser704Cys on brain morphology in healthy volunteers using MR imaging. We found a reduction in gray matter volume in cingulate cortex and a decreased fractional anisotropy in prefrontal white matter of individuals carrying the Cys704 allele compared with Ser/Ser704 subjects. In primary neuronal culture, knockdown of endogenous DISC1 protein by small interfering RNA resulted in the suppression of phosphorylation of ERK and Akt, whose signaling pathways are implicated in MDD. When effects of sDISC1 (Ser704) and cDISC1 (Cys704) proteins were examined separately, phosphorylation of ERK was greater in sDISC1 compared with cDISC1. A possible biological mechanism of MDD might be implicated by these convergent data that Cys704 DISC1 is associated with the lower biological activity on ERK signaling, reduced brain gray matter volume and an increased risk for MDD.
Pituitary adenylate cyclase-activating polypeptide (PACAP, ADCYAP1: adenylate cyclaseactivating polypeptide 1), a neuropeptide with neurotransmission modulating activity, is a promising schizophrenia candidate gene. Here, we provide evidence that genetic variants of the genes encoding PACAP and its receptor, PAC1, are associated with schizophrenia. We studied the effects of the associated polymorphism in the PACAP gene on neurobiological traits related to risk for schizophrenia. This allele of the PACAP gene, which is overrepresented in schizophrenia patients, was associated with reduced hippocampal volume and poorer memory performance. Abnormal behaviors in PACAP knockout mice, including elevated locomotor activity and deficits in prepulse inhibition of the startle response, were reversed by treatment with an atypical antipsychotic, risperidone. These convergent data suggest that alterations in PACAP signaling might contribute to the pathogenesis of schizophrenia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.