IntroductionLate-onset Alzheimer's disease (LOAD, onset age > 60 years) is the most prevalent dementia in the elderly 1 , and risk is partially driven by genetics 2 . Many of the loci responsible for this genetic risk were identified by genome-wide association studies (GWAS) [3][4][5][6][7][8] . To identify additional LOAD risk loci, the we performed the largest GWAS to date (89,769 individuals), analyzing both common and rare variants. We confirm 20 previous LOAD risk loci and identify four new genome-wide loci (IQCK, ACE, ADAM10, and ADAMTS1). Pathway analysis of these data implicates the immune system and lipid metabolism, and for the first time tau binding proteins and APP metabolism. These findings show that genetic variants affecting APP and Aβ processing are not only associated with early-onset autosomal dominant AD but also with LOAD. Analysis of AD risk genes and pathways show enrichment for rare variants (P = 1.32 x 10 -7 ) indicating that additional rare variants remain to be identified. Main TextOur previous work identified 19 genome-wide significant common variant signals in addition to APOE 9 , that influence risk for LOAD. These signals, combined with 'subthreshold' common variant associations, account for ~31% of the genetic variance of LOAD 2 , leaving the majority of genetic risk uncharacterized 10 . To search for additional signals, we conducted a GWAS metaanalysis of non-Hispanic Whites (NHW) using a larger sample (17 new, 46 total datasets) from our group, the International Genomics of Alzheimer's Project (IGAP) (composed of four AD consortia: ADGC, CHARGE, EADI, and GERAD). This sample increases our previous discovery sample (Stage 1) by 29% for cases and 13% for controls (N=21,982 cases; 41,944 controls) ( Supplementary Table 1 and 2, and Supplementary Note). To sample both common and rare variants (minor allele frequency MAF ≥ 0.01, and MAF < 0.01, respectively), we imputed the discovery datasets using a 1000 Genomes reference panel consisting of . CC-BY-NC-ND 4.0 International license peer-reviewed) is the author/funder. It is made available under a 11 36,648,992 single-nucleotide variants, 1,380,736 insertions/deletions, and 13,805 structural variants. After quality control, 9,456,058 common variants and 2,024,574 rare variants were selected for analysis (a 63% increase from our previous common variant analysis in 2013).Genotype dosages were analyzed within each dataset, and then combined with meta-analysis ( Supplementary Figures 1 and 2 and Supplementary Table 3). The Stage 1 discovery metaanalysis was first followed by Stage 2 using the I-select chip we previously developed in Lambert et al (including 11,632 variants, N=18,845) and finally stage 3A (N=6,998). The final sample was 33,692 clinical AD cases and 56,077 controls.Meta-analysis of Stages 1 and 2 produced 21 associations with P ≤ 5x10 -8 (Table 1 and Figure 1). Of these, 18 were previously reported as genome-wide significant and three of them are signals not initially described in Lambert et al: the rare R47H TREM2 coding va...
Deciphering the genetic landscape of Alzheimer disease (AD) is essential to define the pathophysiological pathways involved and to successfully translate genomics to potential tailored medical care. To generate the most complete knowledge of the AD genetics, we developed through the European Alzheimer Disease BioBank (EADB) consortium a discovery meta-analysis of genome-wide association studies (GWAS) based on a new large case-control study and previous GWAS (in total 39,106 clinically diagnosed cases, 46,828 proxy-AD cases and 401,577 controls) with the most promising signals followed-up in independent samples (18,063 cases and 23,207 controls). In addition to 34 known AD loci, we report here the genome-wide significant association of 31 new loci with the risk of AD. Pathway-enrichment analyses strongly indicated the involvement of gene sets related to amyloid and Tau, but also highlighted microglia, in which increased gene expression corresponds to more significant AD risk. In addition, we successfully prioritized candidate genes in the majority of our new loci, with nine being primarily expressed in microglia. Finally, we observed that a polygenic risk score generated from this new genetic landscape was strongly associated with the risk of progression from mild cognitive impairment (MCI) to dementia (4,609 MCI cases of whom 1,532 converted to dementia), independently of age and the APOE e4 allele.
Dense genotype data and thousands of phenotypes from large biobanks, coupled with increasingly accessible summary association statistics from genome-wide association studies (GWAS), provide great opportunities to dissect the complex relationships among human traits and diseases. We introduce BADGERS, a powerful method to perform polygenic score-based biobank-wide scans for disease-trait associations. Compared to traditional regression approaches, BADGERS uses GWAS summary statistics as input and does not require multiple traits to be measured on the same cohort. We applied BADGERS to two independent datasets for Alzheimer's disease (AD; N=61,212). Among the polygenic risk scores (PRS) for 1,738 traits in the UK Biobank, we identified 48 significant trait PRSs associated with AD after adjusting for multiple testing. Family history, high cholesterol, and numerous traits related to intelligence and education showed strong and independent associations with AD. Further, we identified 41 significant PRSs associated with AD endophenotypes. While family history and high cholesterol were strongly associated with neuropathologies and cognitively-defined AD subgroups, only intelligence and education-related traits predicted pre-clinical cognitive phenotypes. These results provide novel insights into the distinct biological processes underlying various risk factors for AD.
Risk for late-onset Alzheimer's disease (LOAD) is driven by multiple loci primarily identified by genome-wide association studies, many of which are common variants with minor allele frequencies (MAF)>0.01. To identify additional common and rare LOAD risk variants, we performed a GWAS on 25,170 LOAD subjects and 41,052 cognitively normal controls in 44 datasets from the International Genomics of Alzheimer's Project (IGAP). Existing genotype data were imputed using the dense, high-resolution Haplotype Reference Consortium (HRC) r1.1 reference panel. Stage 1 associations of P<10-5 were meta-analyzed with the European Alzheimer's Disease Biobank (EADB) (n=20,301 cases; 21,839 controls) (stage 2 combined IGAP and EADB). An expanded meta-analysis was performed using a GWAS of parental AD/dementia history in the UK Biobank (UKBB) (n=35,214 cases; 180,791 controls) (stage 3 combined IGAP, EADB, and UKBB). Common variant (MAF≥0.01) associations were identified for 29 loci in stage 2, including novel genome-wide significant associations at TSPAN14 (P=2.33×10-12), SHARPIN (P=1.56×10-9), and ATF5/SIGLEC11 (P=1.03[mult]10-8), and newly significant associations without using AD proxy cases in MTSS1L/IL34 (P=1.80×10-8), APH1B (P=2.10×10-13), and CLNK (P=2.24×10-10). Rare variant (MAF<0.01) associations with genome-wide significance in stage 2 included multiple variants in APOE and TREM2, and a novel association of a rare variant (rs143080277; MAF=0.0054; P=2.69×10-9) in NCK2, further strengthened with the inclusion of UKBB data in stage 3 (P=7.17×10-13). Single-nucleus sequence data shows that NCK2 is highly expressed in amyloid-responsive microglial cells, suggesting a role in LOAD pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.