Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California. We thank Drs. D. Stephen Snyder and Marilyn Miller from NIA who are ex-officio ADGC members. EADI. This work has been developed and supported by the LABEX (laboratory of excellence program investment for the future) DISTALZ grant (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer's disease) including funding from MEL (Metropole européenne de Lille), ERDF (European Regional Development Fund) and Conseil Régional Rotterdam, Netherlands Organization for the Health Research and Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII), and the Municipality of Rotterdam. The authors are grateful to the study participants, the staff from the Rotterdam Study and the participating general practitioners and pharmacists. The generation and management of GWAS genotype data for the Rotterdam Study (RS-I, RS-II, RS-III) was executed by the Human Genotyping Facility of the Genetic Laboratory of the
IntroductionLate-onset Alzheimer's disease (LOAD, onset age > 60 years) is the most prevalent dementia in the elderly 1 , and risk is partially driven by genetics 2 . Many of the loci responsible for this genetic risk were identified by genome-wide association studies (GWAS) [3][4][5][6][7][8] . To identify additional LOAD risk loci, the we performed the largest GWAS to date (89,769 individuals), analyzing both common and rare variants. We confirm 20 previous LOAD risk loci and identify four new genome-wide loci (IQCK, ACE, ADAM10, and ADAMTS1). Pathway analysis of these data implicates the immune system and lipid metabolism, and for the first time tau binding proteins and APP metabolism. These findings show that genetic variants affecting APP and Aβ processing are not only associated with early-onset autosomal dominant AD but also with LOAD. Analysis of AD risk genes and pathways show enrichment for rare variants (P = 1.32 x 10 -7 ) indicating that additional rare variants remain to be identified. Main TextOur previous work identified 19 genome-wide significant common variant signals in addition to APOE 9 , that influence risk for LOAD. These signals, combined with 'subthreshold' common variant associations, account for ~31% of the genetic variance of LOAD 2 , leaving the majority of genetic risk uncharacterized 10 . To search for additional signals, we conducted a GWAS metaanalysis of non-Hispanic Whites (NHW) using a larger sample (17 new, 46 total datasets) from our group, the International Genomics of Alzheimer's Project (IGAP) (composed of four AD consortia: ADGC, CHARGE, EADI, and GERAD). This sample increases our previous discovery sample (Stage 1) by 29% for cases and 13% for controls (N=21,982 cases; 41,944 controls) ( Supplementary Table 1 and 2, and Supplementary Note). To sample both common and rare variants (minor allele frequency MAF ≥ 0.01, and MAF < 0.01, respectively), we imputed the discovery datasets using a 1000 Genomes reference panel consisting of . CC-BY-NC-ND 4.0 International license peer-reviewed) is the author/funder. It is made available under a 11 36,648,992 single-nucleotide variants, 1,380,736 insertions/deletions, and 13,805 structural variants. After quality control, 9,456,058 common variants and 2,024,574 rare variants were selected for analysis (a 63% increase from our previous common variant analysis in 2013).Genotype dosages were analyzed within each dataset, and then combined with meta-analysis ( Supplementary Figures 1 and 2 and Supplementary Table 3). The Stage 1 discovery metaanalysis was first followed by Stage 2 using the I-select chip we previously developed in Lambert et al (including 11,632 variants, N=18,845) and finally stage 3A (N=6,998). The final sample was 33,692 clinical AD cases and 56,077 controls.Meta-analysis of Stages 1 and 2 produced 21 associations with P ≤ 5x10 -8 (Table 1 and Figure 1). Of these, 18 were previously reported as genome-wide significant and three of them are signals not initially described in Lambert et al: the rare R47H TREM2 coding va...
Genetic discoveries of Alzheimer’s disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer’s disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer’s disease patients in APOE ɛ4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer’s disease.
Polygenic Risk Scores (PRS) for AD offer unique possibilities for reliable identification of individuals at high and low risk of AD. However, there is little agreement in the field as to what approach should be used for genetic risk score calculations, how to model the effect of APOE, what the optimal p-value threshold (pT) for SNP selection is and how to compare scores between studies and methods. We show that the best prediction accuracy is achieved with a model with two predictors (APOE and PRS excluding APOE region) with pT<0.1 for SNP selection. Prediction accuracy in a sample across different PRS approaches is similar, but individuals’ scores and their associated ranking differ. We show that standardising PRS against the population mean, as opposed to the sample mean, makes the individuals’ scores comparable between studies. Our work highlights the best strategies for polygenic profiling when assessing individuals for AD risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.