SUMMARYMutant analyses in different eudicotyledonous flowering plants demonstrated that SEPALLATA-like MADSbox genes are required for the specification of sepals, petals, stamens and carpels, and for floral determinacy, thus defining class E floral organ identity genes. SEP-like genes encode MADS-domain transcription factors and constitute an angiosperm-specific gene clade whose members show remarkably different degrees of redundancy and sub-functionalization within eudicots. To better understand the evolutionary dynamics of SEP-like genes throughout the angiosperms we have knocked down SEP-like genes of rice (Oryza sativa), a distant relative of eudicots within the flowering plants. Plants affected in both OsMADS7 and OsMADS8 show severe phenotypes including late flowering, homeotic changes of lodicules, stamens and carpels into palea/ lemma-like organs, and a loss of floral determinacy. Simultaneous knockdown of the four rice SEP-like genes OsMADS1, OsMADS5, OsMADS7 and OsMADS8, leads to homeotic transformation of all floral organs except the lemma into leaf-like organs. This mimics the phenotype observed with the sep1 sep2 sep3 sep4 quadruple mutant of Arabidopsis. Detailed analyses of the spatial and temporal mRNA expression and protein interaction patterns corresponding to the different rice SEP-like genes show strong similarities, but also gene-specific differences. These findings reveal conservation of SEP-like genes in specifying floral determinacy and organ identities since the separation of eudicots and monocots about 150 million years ago. However, they indicate also monocot-specific neo-and sub-functionalization events and hence underscore the evolutionary dynamics of SEP-like genes. Moreover, our findings corroborate the view that the lodicules of grasses are homologous to eudicot petals.
Floral MADS-box genes encode transcription factors that play critical roles in the development and evolution of the flower. Proteins of floral MADS-box genes regulate the expression of their downstream genes by forming various homodimers/heterodimers and quaternary complexes. Interactions among proteins of floral MADS-box genes have been documented in several model species, yet the information accumulated so far is still not sufficient to draw a general picture of the evolution of the interactions. We have characterized 28 putative floral MADS-box genes from three representative basal eudicots (i.e., Euptelea pleiospermum, Akebia trifoliata, and Pachysandra terminalis) and investigated the protein-protein interactions (PPIs) among the proteins encoded by these genes using yeast two-hybrid assays. We found that, although the PPIs in basal eudicots are largely consistent with those in core eudicots and monocots, there are lineage-specific features that have not been observed elsewhere. We also reconstructed the evolutionary histories of the PPIs among members of seven MADS-box gene lineages (i.e., AP1, AP3, PI, AG, STK, AGL2, and AGL9) in angiosperms. We revealed that the PPIs were extremely conserved in nine (or 32.1%) of the 28 possible combinations, whereas considerable variations existed in seven (25.0%) of them; in the remaining 12 (or 42.9%) combinations, however, no interaction was observed. Notably, most of the PPIs required for the formation of quaternary complexes, as suggested by the "quartet model," were highly conserved. This suggested that the evolutionarily conservative PPIs may have played critical roles in the establishment of the basic structure (or architecture) of the flower and experienced coevolution to maintain their functions. The evolutionarily variable PPIs, however, seem to have played subsidiary roles in flower development and have contributed to the variation in floral traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.