Target-specific reactive oxygen species (ROS)-based cancer treatments with high therapeutic efficacy and minimal side effects have been identified recently as a potentially effective cancer management strategy. Herein, we report the fabrication of a targeted nanotheranostic agent built on an iron oxide nanoparticle-decorated graphene−gold hybrid [plasmonic magnetic nanoprobe (PMNP)] for self-guided magnetic resonance (MR)/surface-enhanced Raman scattering imaging and photothermal therapy (PTT)/chemodynamic therapy (CDT). In the presence of glutathione, which is abundant in the tumor environment, the iron oxide nanoparticles undergo in situ reduction, which in turn generates hydroxyl radicals via a Fenton reaction to realize targeted destruction of tumor cells. Moreover, the localized production of heat benefited from the near-infrared absorption of the PMNP accelerates the intratumoral ROS generation process, with a synergistic effect of CDT/PTT. Furthermore, the probe offers an accurate visualization of the intracellular localization of the material through SERS/MR dual imaging channels. In view of the advantages offered by the tumor-specific stimuli-responsive nature of the probe, the PMNP presents as an effective tool for cancer management.
Gold–graphene nanohybrid for simultaneous dual-imaging guided triple therapy as a new paradigm in light-triggered cancer theranostics. The material demonstrates excellent therapeutic efficacy and treatment monitoring features.
Early diagnosis and therapy of liver fibrosis is of utmost importance, especially considering the increased incidence of alcoholic and non-alcoholic liver syndromes. In this work, a systematic study is reported to develop a dual function and biocompatible nanoprobe for liver specific diagnostic and therapeutic applications. A polysaccharide polymer, pullulan stabilized iron oxide nanoparticle (P-SPIONs) enabled high liver specificity via asialogycoprotein receptor mediation. Longitudinal and transverse magnetic relaxation rates of 2.15 and 146.91 mM−1 s−1 respectively and a size of 12 nm, confirmed the T2 weighted magnetic resonance imaging (MRI) efficacy of P-SPIONs. A current of 400A on 5 mg/ml of P-SPIONs raised the temperature above 50 °C, to facilitate effective hyperthermia. Finally, a NIR dye conjugation facilitated targeted dual imaging in liver fibrosis models, in vivo, with favourable histopathological results and recommends its use in early stage diagnosis using MRI and optical imaging, and subsequent therapy using hyperthermia.
Although, cancer is considered as a localized disease in its premature stages, in certain types of cells, it results in metastasis, which accounts for over 90% of the total cancer deaths in the world. During the metastatic stage, cancer cells migrate from the primary tumor site to secondary sites through the circulating bloodstream, resulting in metastasis at unexpected body parts. This situation makes it critical to identify and quantify the circulating tumor cells (CTCs) during the early stages of tumorigenesis. Despite the clinical importance and progress of liquid biopsy and CTC-based cancer diagnostics, it still remains extremely challenging to develop systems to detect CTCs in cancer patients as its presence is extremely low in number (1−10 CTCs per mL of blood plasma). In this article, we discuss about the design and fabrication of a robust and user-friendly custom-designed nanotag-enabled portable filter-based sensor system for the selective separation and isolation of circulating breast cancer cells from whole blood. The filter sensor platform basically consists of a centrifugal prototype to quickly transfer unprocessed blood samples up to 5 mL within 60 s, isolating the circulating breast cancer cells selectively over the anti-EpCAM antibody-immobilized polycarbonate (PC) filter. Moreover, it is also equipped with a sandwich complex of a surface-enhanced Raman scattering (SERS) nanotag comprising a gold− graphene hybrid integrated with anti-ErbB2 antibody (Au-rGO@anti-ErbB2) for the SERS-assisted quantification of CTCs. As compared to the immunoaffinity-based CTC isolation platforms, the centrifugal force-based SERS nanotag enabled filter sensor system proved to be a clog free, highly sensitive, and selective platform toward the rapid isolation of viable breast cancer cells up to 5 tumor cells/mL from whole blood without any sample pretreatment. The high sensitivity, ease of use, and quick availability of results recommends the current filter sensor platform as a universal liquid biopsy technique for the quantification of CTCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.