Tumour repressor p53 isoform Δ133p53 is a target gene of p53 and an antagonist of p53-mediated apoptotic activity. We recently demonstrated that Δ133p53 promotes DNA double-strand break (DSB) repair by upregulating transcription of the repair genes RAD51, LIG4 and RAD52 in a p53-independent manner. However, Δ133p53 lacks the transactivation domain of full-length p53, and the mechanism by which it exerts transcriptional activity independently of full-length p53 remains unclear. In this report, we describe the accumulation of high levels of both Δ133p53 and p73 (a p53 family member) at 24 h post γ-irradiation (hpi). Δ133p53 can form a complex with p73 upon γ-irradiation. The co-expression of Δ133p53 and p73, but not either protein alone, can significantly promote DNA DSB repair mechanisms, including homologous recombination (HR), non-homologous end joining (NHEJ) and single-strand annealing (SSA). p73 and Δ133p53 act synergistically to promote the expression of RAD51, LIG4 and RAD52 by joining together to bind to region containing a Δ133p53-responsive element (RE) and a p73-RE in the promoters of all three repair genes. In addition to its accumulation at 24 hpi, p73 protein expression also peaks at 4 hpi. The depletion of p73 not only reduces early-stage apoptotic frequency (4–6 hpi), but also significantly increases later-stage DNA DSB accumulation (48 hpi), leading to cell cycle arrest in the G2 phase and, ultimately, cell senescence. In summary, the apoptotic regulator p73 also coordinates with Δ133p53 to promote DNA DSB repair, and the loss of function of p73 in DNA DSB repair may underlie spontaneous and carcinogen-induced tumorigenesis in p73 knockout mice.
Metastasis‐associated lung adenocarcinoma transcript 1 (malat1) is an oncogenic long non‐coding RNA (lncRNA) which has been proven to be associated with various types of tumors. Transcription factor specificity protein 1 (SP1) is overexpressed in many types of cancers. Previously, we observed that malat1 expression level is regulated by SP1 in lung cancer. In the present study, we found that transfection of expression construct of malat1 5′ end fragment M5 enhances stability and transcriptional activity of SP1. Various SP1 target genes are also upregulated following overexpression of malat1 M5 in lung adenocarcinoma cells. We also showed that malat1 M5 interacts with the C‐terminal domain of SP1 by RNA immunoprecipitation (RIP) assay coupled with UV cross‐linking. Malat1‐SP1 association results in increase of SP1 stability. In turn, SP1 promotes malat1 transcription, thus forming a positive feedback loop. In conclusion, our data show that in lung adenocarcinoma cells, malat1 interacts with SP1 protein and promotes SP1‐mediated transcriptional regulation of SP1 target genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.