Recommender systems on E-Commerce platforms track users' online behaviors and recommend relevant items according to each user’s interests and needs. Bipartite graphs that capture both user/item feature and use-item interactions have been demonstrated to be highly effective for this purpose. Recently, graph neural network (GNN) has been successfully applied in representation of bipartite graphs in industrial recommender systems. Providing individualized recommendation on a dynamic platform with billions of users is extremely challenging. A key observation is that the users of an online E-Commerce platform can be naturally clustered into a set of communities. We propose to cluster the users into a set of communities and make recommendations based on the information of the users in the community collectively. More specifically, embeddings are assigned to the communities and the user embedding is decomposed into two parts, each of which captures the community-level generalizations and individualized preferences respectively. The community embedding can be considered as an enhancement to the GNN methods that are inherently flat and do not learn hierarchical representations of graphs. The performance of the proposed algorithm is demonstrated on a public dataset and a world-leading E-Commerce company dataset.
Click-through rate (CTR) prediction becomes indispensable in ubiquitous web recommendation applications. Nevertheless, the current methods are struggling under the cold-start scenarios where the user interactions are extremely sparse. We consider this problem as an automatic identification about whether the user behaviors are rich enough to capture the interests for prediction, and propose an Auto-Quantized Contrastive Learning (AQCL) loss to regularize the model. Different from previous methods, AQCL explores both the instance-instance and the instance-cluster similarity to robustify the latent representation, and automatically reduces the information loss to the active users due to the quantization. The proposed framework is agnostic to different model architectures and can be trained in an end-to-end fashion. Extensive results show that it consistently improves the current state-of-the-art CTR models. * Work done when Pan was an intern at Alibaba Group.
With the hardware development of mobile devices, it is possible to build the recommendation models on the mobile side to utilize the fine-grained features and the real-time feedbacks. Compared to the straightforward mobile-based modeling appended to the cloudbased modeling, we propose a Slow-Fast learning mechanism to make the Mobile-Cloud Collaborative recommendation (MC 2 -SF) mutual benefit. Specially, in our MC 2 -SF, the cloud-based model and the mobile-based model are respectively treated as the slow component and the fast component, according to their interaction frequency in real-world scenarios. During training and serving, they will communicate the prior/privileged knowledge to each other to help better capture the user interests about the candidates, resembling the role of System I and System II in the human cognition. We conduct the extensive experiments on three benchmark datasets and demonstrate the proposed MC 2 -SF outperforms several state-of-the-art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.