The cumulative conformance count (CCC) chart has been used for monitoring processes with very low fraction of nonconforming items. Typically, the items produced from the process were examined using 100% inspection for generating the CCC chart. However, this would be costly when taking the inspection cost and time into consideration and thus limit its application. Instead of inspecting the items one by one, this study takes sample from them, and regards the time between two successive samples as the sampling interval. In order to increase the sensitivity of the CCC chart to process change, the sampling interval and control limits are allowed to vary in this study. The average time to signal process change of the modified CCC chart (called the variable sampling interval and control limit (VSI/VCL) CCC chart) is derived by the Markov chain approach and taken as the performance measure to evaluate its statistical efficiency. With some minor changes, this chart can be reduced to the VSI CCC chart, the VCL CCC chart, and the standard CCC chart. In addition, comparisons among them are made and discussed.
In practice, lifetime performance index CL has been a method commonly applied to the evaluation of quality performance. L is the upper or lower limit of the specification. The product lifetime distribution is mostly abnormal distribution. This study explored that the lifetime of commodities comes from exponential distribution. Complete data collection is the primary goal of analysis. However, the censoring type is one of the most commonly used methods due to considerations of manpower and material cost or the timeliness of product launch. This study adopted Type-II right censoring to find out the uniformly minimum variance unbiased (UMVU) estimator of the lifetime performance index CL and its probability density function. Afterward this study obtained the 100×(1-α)% confidence interval of the lifetime performance index CL as well as created the uniformly most powerful (UMP) test and the power of the test for the product lifetime performance index. Last, this study came up with a numerical example to demonstrate the suggested method as well as the application of the model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.