The turn-on mechanism of silicon-controlled rectifier (SCR) devices is essentially a current triggering event. While a current is applied to the base or substrate of an SCR device, it can be quickly triggered on into its latching state. In this paper, latchup-free electrostatic discharge (ESD) protection circuits, which are combined with the substrate-triggered technique and an SCR device, are proposed. A complementary circuit style with the substrate-triggered SCR device is designed to discharge both the pad-toSS and pad-to-DD ESD stresses. The novel complementary substrate-triggered SCR devices have the advantages of controllable switching voltage, adjustable holding voltage, faster turn-on speed, and compatible to general CMOS process without extra process modification such as the silicide-blocking mask and ESD implantation. The total holding voltage of the substrate-triggered SCR device can be linearly increased by adding the stacked diode string to avoid the transient-induced latchup issue in the ESD protection circuits. The on-chip ESD protection circuits designed with the proposed complementary substrate-triggered SCR devices and stacked diode string for the input/output pad and power pad have been successfully verified in a 0.25m salicided CMOS process with the human body model (machine model) ESD level of 7.25 kV (500 V) in a small layout area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.