Cationic methylpalladium complexes with hemilabile bidentate ligands of alpha-amino-pyridines, in the form of {[R(1)HNCR(2)H(o-C(6)H(5)N)]Pd(Me)(NCMe)}(BF(4)) (R(1) = (i)Pr, (t)Bu, Ar R(2) = H, Me) have been found to be effective precursors for catalytic copolymerization of ethylene and norbornene under mild conditions. The copolymer products exhibit predominant alternating microstructures which are evidenced by NMR and mass spectrometry as well as a kinetic analysis according to the Finman-Ross relationship.
A series of hemilabile ligands of alpha-aminoaldimines and their methylpalladium complexes have been prepared and characterized. Neutral square-planar methylpalladium complexes in the form of [R(1)R(2)NCMe(2)CH horizontal lineNR]Pd(Me)Cl (R = Me, R(1) = R(2) = Me (3a); R = Me, R(1) = R(2) = Et (3b); R = Et, R(1) = R(2) = Me (4a); R = (n)Pr, R(1) = R(2) = Me (5a); R = (i)Pr, R(1) = R(2) = Me (6a); R = (i)Pr, R(1) = R(2) = Et (6b); R = (i)Pr, (R(1), R(2)) = c-C(4)H(8) (6c); R = (i)Pr, R(1) = (i)Pr, R(2) = H (6d); R = (i)Pr, R(1) = (t)Bu, R(2) = H (6e); R = (t)Bu, R(1) = R(2) = Me (7a); R = (t)Bu, R(1) = R(2) = Et (7b); R = (t)Bu, (R(1), R(2)) = c-C(4)H(8) (7c); R = (t)Bu, R(1) = (i)Pr, R(2) = H (7d); R = (t)Bu, R(1) = (t)Bu, R(2) = H (7e); R = Ph, R(1) = R(2) = Me (8a); R = Ph, R(1) = R(2) = Et (8b)) show geometrical isomerism. The relative ratios of trans/cis isomers appear to be predominated by the steric hindrance between the Pd-bound methyl group and imino or amino substituents (R and R(1) and R(2)). The NMR studies for the substitution reaction of (COD)Pd(Me)Cl with Et(2)NCMe(2)CH horizontal lineN(i)Pr at -20 degrees C indicate that cis-6b is the major kinetic product, which isomerizes to the thermodynamic product in trans form quantitatively above -5 degrees C. Kinetic results show that the ligand substitution reaction likely undergoes an associative pathway, and the isomerization reaction proceeds via an intramolecular process that comprises imine dissociation and recoordination.
Imidazolium salts, [RS(O)-CH2 (C3 H3 N2 )Mes]Cl (R=Me (L1a), Ph (L1b)); Mes=mesityl), make convenient carbene precursors. Palladation of L1a affords the monodentate dinuclear complex, [(PdCl2 {MeS(O)CH2 (C3 H2 N2 )Mes})2 ] (2a), which is converted into trans-[PdCl2 (NHC)2] (trans-4a; N-heterocyclic carbene) with two rotamers in anti and syn configurations. Complex trans-4a can isomerize into cis-4a(anti) at reflux in acetonitrile. Abstraction of chlorides from 4a or 4b leads to the formation of a new dication: trans-[Pd{RS(O)CH2(C3H2N2)Mes}2](PF6)2 (R=Me (5a), Ph (5b)). The X-ray structure of 5a provides evidence that the two bidentate SO-NHC ligands at palladium(II) are in square-planar geometry. Two sulfoxides are sulfur- and oxygen-bound, and constitute five- and six-membered chelate rings with the metal center, respectively. In acetonitrile, complexes 5a or 5b spontaneously transform into cis-[Pd(NHC)2(NCMe)2](PF6)2. Similar studies of thioether-NHCs have also been examined for comparison. The results indicate that sulfoxides are more labile than thioethers.
A series of α-aminopyridines in the form of (2,6-C(6)H(3)N)(R(1))(CHR(2)NR(3)R(4)) (R(1) = R(2) = H R(3) = H R(4) = (i)Pr (L1a), R(4) = (t)Bu (L1b), R(4) = Ph (L1c), R(4) = 2,6-Me(2)C(6)H(3) (L1d), R(4) = 2,6-(i)Pr(2)C(6)H(3) (L1e), R(1) = R(2) = H R(3) = R(4) = Et (L1f), R(1) = H R(2) = Me R(3) = H R(4) = (i)Pr (L2a), R(4) = Ph (L2c), R(4) = 2,6-Me(2)C(6)H(3) (L2d), R(4) = 2,6-(i)Pr(2)C(6)H(3) (L2e), R(1) = Me R(2) = H R(3) = H R(4) = 2,6-(i)Pr(2)C(6)H(3) (L3e)) and β-aminopyridines in the form of (2-C(6)H(4)N)(CH(2)CH(2)NR(1)R(2)) (R(1) = H R(2) = (i)Pr (4a), R(2) = (t)Bu (L4b), R(1) = R(2) = Et (L4f)) have been prepared. Their corresponding halonickel complexes 1a-4f are synthesized by ligand substitution from (DME)NiBr(2) and the molecular structures are characterized. Four types of coordination modes include four-coordinate mononuclear species with one ligand, five-coordinate mononuclear species with two ligands, five-coordinate dinuclear species with two ligands, and a six-coordinate polymeric framework were determined by X-ray crystallography. Using methylaluminoxanes (MAO) as the activator, the nickel complexes can catalyze ethylene polymerization under moderate pressure and ambient temperature. The activity reaches 10(5) g PE mol(-1) Ni h. The PE products with high branching and high crystallinity have M(n) ~ 10(3) with PDI < 2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.