The Triticum aestivum L. endoxylanase inhibitor (TAXI) discovered by Debyser and Delcour [(1997) Eur. Pat. filed April 1997, published as WO 98/49278] and Debyser, Derdelinckx and Delcour [(1997) J. Am. Soc. Brew. Chem. 55, 153Ő156] seems to be a mixture of two different endoxylanase inhibitors, called TAXI I and TAXI II. By using Aspergillus niger as well as Bacillus subtilis endoxylanases for assaying inhibition activity, both inhibitors could be purified to homogeneity from wheat (Triticum aestivum L., var. Soissons). TAXI I and TAXI II have similar molecular structures. They both have a molecular mass of approx. 40.0kDa, are not glycosylated and occur in two molecular forms, i.e. a non-proteolytically processed one and a proteolytically processed one. However, the pI of TAXI II (at least 9.3) is higher than that of TAXI I (8.8). TAXI I and TAXI II clearly show different inhibition activities towards different endoxylanases. The N-terminal amino acid sequences of both inhibitors show a high degree of identity, which might indicate that there is an evolutionary relationship between them.
338Part I V Bread different k u r constituents in a well-defined way. Therefore, prior to discussing the role of different enzymes in breadmaking, a concise overview of the structure and properties of the different k u r constituents and their functionality in breadmaking is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.