Efficient integration of neuronal cells and electronic devices could result in hybrid bi-directional communication systems that would enable us to interact at fundamental levels with biological structures and gain insight in the mechanisms governing their functions. Such systems require a very tight coupling between the neuronal cell membrane and the surface of an electronic chip. In this paper we report an approach where the combination of specialized surface chemistry and the manipulation of biological processes, like a phagocytosis-like process, might improve this coupling. As a model, we used coated micro-and nano-sized beads and induced phagocytosis-like events by adding them to cultured cells. The development of the surface chemistry and the results obtained with beads functionalized with a laminin derived peptide are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.