Background: The Monitoring Trends in Burn Severity (MTBS) program has been providing the fire science community with large fire perimeter and burn severity data for the past 14 years. As of October 2019, 22 969 fires have been mapped by the MTBS program and are available on the MTBS website (https://www.mtbs.gov). These data have been widely used by researchers to examine a variety of fire and climate science topics. However, MTBS has undergone significant changes to its fire mapping methodology, the remotely sensed imagery used to map fires, and the subsequent fire occurrence, burned boundary, and severity databases. To gather a better understanding of these changes and the potential impacts that they may have on the user community, we examined the changes to the MTBS burn mapping protocols and whether remapped burned area boundary and severity products differ significantly from the original MTBS products. Results: As MTBS data have been used over the course of many years and for many disparate applications, users should be aware that the MTBS burned area and severity products have been actively reviewed and revised to benefit from more robust satellite image availability and to address any observed quality issues. In a sample of 123 remapped fires, we found no significant change in the burned area boundary products when compared to the original mapped fires; however, significant changes did exist in the distribution of unburned, low, and moderate burn severity pixels within the thematic product. Conclusions: Analysis of these remapped fires provides a look into how the MTBS fire mapping methods have evolved over time. In the future, additional changes to the MTBS data record may impact data users' downstream applications. The MTBS program has an established continuous improvement approach to the MTBS methodology and products, and subsequently encourages users to confirm that they are using the most recent data.
Regression tree models have been widely used for remote sensing-based ecosystem mapping. Improper use of the sample data (model training and testing data) may cause overfitting and underfitting effects in the model. The goal of this study is to develop an optimal sampling data usage strategy for any dataset and identify an appropriate number of rules in the regression tree model that will improve its accuracy and robustness. Landsat 8 data and Moderate-Resolution Imaging Spectroradiometer-scaled Normalized Difference Vegetation Index (NDVI) were used to develop regression tree models. A Python procedure was designed to generate random replications of model parameter options across a range of model development data sizes and rule number constraints. The mean absolute difference (MAD) between the predicted and actual NDVI (scaled NDVI, value from 0-200) and its variability across the different randomized replications were calculated to assess the accuracy and stability of the models. In our case study, a six-rule regression tree model developed from 80% of the sample data had the lowest MAD (MAD training = 2.5 and MAD testing = 2.4), which was suggested as the optimal model. This study demonstrates how the training data and rule number selections impact model accuracy and provides important guidance for future remote-sensing-based ecosystem modeling.
Vegetation structure, including forest canopy height, is an important input variable to fire behavior modeling systems for simulating wildfire behavior. As such, forest canopy height is one of a nationwide suite of products generated by the LANDFIRE program. In the past, LANDFIRE has relied on a combination of field observations and Landsat imagery to develop existing vegetation structure products. The paucity of field data in the remote Alaskan forests has led to a very simple forest canopy height classification for the original LANDFIRE forest height map. To better meet the needs of data users and refine the map legend, LANDFIRE incorporated ICESat Geoscience Laser Altimeter System (GLAS) data into the updating process when developing the LANDFIRE 2010 product. The high latitude of this region enabled dense coverage of discrete GLAS samples, from which forest height was calculated. Different methods for deriving height from the GLAS waveform data were applied, including an attempt to correct for slope. These methods were then evaluated and integrated into the final map according to predefined criteria. The resulting map of forest canopy height includes more height classes than the original map, thereby better depicting the heterogeneity of the landscape, and provides seamless data for fire behavior analysts and other users of LANDFIRE data.
The LANDFIRE Program provides comprehensive vegetation and fuel datasets for the entire United States. As with many large-scale ecological datasets, vegetation and landscape conditions must be updated periodically to account for disturbances, growth, and natural succession. The LANDFIRE Refresh effort was the first attempt to consistently update these products nationwide. It incorporated a combination of specific systematic improvements to the original LANDFIRE National data, remote sensing based disturbance detection methods, field collected disturbance information, vegetation growth and succession modeling, and vegetation transition processes. This resulted in the creation of two complete datasets for all 50 states: LANDFIRE Refresh 2001, which includes the systematic improvements, and LANDFIRE Refresh 2008, which includes the disturbance and succession updates to the vegetation and fuel data. The new datasets are comparable for studying landscape changes in vegetation type and structure over a decadal period, and provide the most recent characterization of fuel conditions across the country. The applicability of the new layers is discussed and the effects of using the new fuel datasets are demonstrated through a fire behavior modeling exercise using the 2011 Wallow Fire in eastern Arizona as an example.
Accurate information about three-dimensional canopy structure and wildland fuel across the landscape is necessary for fire behaviour modelling system predictions. Remotely sensed data are invaluable for assessing these canopy characteristics over large areas; lidar data, in particular, are uniquely suited for quantifying three-dimensional canopy structure. Although lidar data are increasingly available, they have rarely been applied to wildland fuels mapping efforts, mostly due to two issues. First, the Landscape Fire and Resource Planning Tools (LANDFIRE) program, which has become the default source of large-scale fire behaviour
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.