ABSTRACT. Tackling societal and environmental challenges requires new approaches that connect top-down global oversight with bottom-up subnational knowledge. We present a novel framework for participatory development of spatially explicit scenarios at national scale that model socioeconomic and environmental dynamics by reconciling local stakeholder perspectives and national spatial data. We illustrate results generated by this approach and evaluate its potential to contribute to a greater understanding of the relationship between development pathways and sustainability. Using the lens of land use and land cover changes, and engaging 240 stakeholders representing subnational (seven forest management zones) and the national level, we applied the framework to assess alternative development strategies in the Tanzania mainland to the year 2025, under either a business as usual or a green development scenario. In the business as usual scenario, no productivity gain is expected, cultivated land expands by ~ 2% per year (up to 88,808 km²), with large impacts on woodlands and wetlands. Despite legal protection, encroachment of natural forest occurs along reserve borders. Additional wood demand leads to degradation, i.e., loss of tree cover and biomass, up to 80,426 km² of wooded land. The alternative green economy scenario envisages decreasing degradation and deforestation with increasing productivity (+10%) and implementation of payment for ecosystem service schemes. In this scenario, cropland expands by 44,132 km² and the additional degradation is limited to 35,778 km². This scenario development framework captures perspectives and knowledge across a diverse range of stakeholders and regions. Although further effort is required to extend its applicability, improve users' equity, and reduce costs the resulting spatial outputs can be used to inform national level planning and policy implementation associated with sustainable development, especially the REDD+ climate mitigation strategy.
Research initiatives and practical experiences have demonstrated that forest-related data collected by local communities can play an essential role in the development of national REDD+ programs and its' measurement, reporting, verification (MRV) systems. In Tanzania, the national REDD+ Strategy aims to reward local communities participating in forest management under Participatory Forest Management (PFM). Accessing carbon finances requires among other things, accurate measurements of carbon stock changes through conventional forest inventories, something which is rarely done in PFM forests due to its high cost and limited resources. The main objective of this paper is to discuss experiences of Participatory Forest Carbon Assessment (PFCA) in Tanzania. The study revealed that villagers who participated in PFCA were able to perform most steps for carbon assessment in the field. A key challenge in future is how to finance PFCA and ensure the technical capacity at local level.
SummaryReducing emissions from deforestation and forest degradation plus the conservation of forest carbon stocks, sustainable management of forests and enhancement of forest carbon stocks in developing countries (REDD+) requires information on land-use and land-cover changes (LULCCs) and carbon emission trends from the past to the present and into the future. Here, we use the results of participatory scenario development in Tanzania to assess the potential interacting impacts on carbon stock, biodiversity and water yield of alternative scenarios where REDD+ is or is not effectively implemented by 2025, a green economy (GE) scenario and a business as usual (BAU) scenario, respectively. Under the BAU scenario, LULCCs will cause 296 million tonnes of carbon (MtC) national stock loss by 2025, reduce the extent of suitable habitats for endemic and rare species (mainly in encroached protected mountain forests) and change water yields. In the GE scenario, national stock loss decreases to 133 MtC. In this scenario, consistent LULCC impacts occur within small forest patches with high carbon density, water catchment capacity and biodiversity richness. Opportunities for maximizing carbon emission reductions nationally are largely related to sustainable woodland management, but also contain trade-offs with biodiversity conservation and changes in water availability.
The aim of this study was to determine the changes in forest carbon in three village forests in Tanzania during - using participatory forest carbon assessment, and to evaluate the capability of the local communities to undertake the assessment, and the costs involved. The results show that forest degradation is caused not only by disturbance as a result of anthropogenic activities; other causes include natural mortality of small trees as a result of canopy closure, and the attraction of wild animals to closed-canopy forests. Thus, mechanisms are required to compensate communities for carbon loss that is beyond their control. However, an increase in the abundance of elephants Loxodonta africana and other fauna should not be considered negatively by local communities and other stakeholders, and the importance of improved biodiversity in the context of carbon stocks should be emphasized by those promoting REDD+ (Reduced Emissions from Deforestation and Forest Degradation). This case study also shows that the cost per ha of USD , for participatory forest carbon assessment is less than that reported for Tanzania and elsewhere (USD -); this is attributed to the large area of forest studied. However, the cost of data analysis and reporting in (USD ,) was significantly higher than the baseline cost (USD ,) established in because of the involvement of external experts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.