Organizational and technical approaches have proven successful in increasing the performance and preventing risks at socio-technical systems at all scales. Nevertheless, damaging events are often unavoidable due to a wide and dynamic threat landscape and enabled by the increasing complexity of modern systems. For overall performance and risk control at the system level, resilience can be a versatile option, in particular for reducing resources needed for system development, maintenance, reuse, or disposal. This paper presents a framework for a resilience assessment and management process that builds on existing risk management practice before, during, and after potential and real events. It leverages tabular and matrix correlation methods similar as standardized in the field of risk analysis to fulfill the step-wise resilience assessment and management for critical functions of complex systems. We present data needs for the method implementation and output generation, in particular regarding the assessment of threats and the effects of counter measures. Also included is a discussion of how the results contribute to the advancement of functional risk control and resilience enhancement at system level as well as related practical implications for its efficient implementation. The approach is applied in the domains telecommunication, gas networks, and indoor localization systems. Results and implications are further discussed.
The effective protection of critical infrastructure against cyber and physical security threats involves many different steps from initially the identification of risks to finally the implementation of counter measures in the infrastructure. To derive counter measures and to come to intelligent decisions facing the identified risks, the impact calculation plays a central role. The impact of a specific threat can propagate through the systems of the infrastructure and thus needs to be analysed carefully. In this paper, the role of impact propagation of cyber-physical threats for infrastructure protection is discussed, exemplified for airport systems. In the ongoing EU-H2020 project SATIE (Security of Air Transport Infrastructure of Europe) a toolkit is developed containing two tools for impact propagation, namely the Business Impact Assessment (BIA) and the Impact Propagation Simulation (IPS). Both tools are described and for a small test case the propagation of a cyber threat and the transformation into a physical threat is demonstrated in a network representation as well as an agent-based model of the airport’s systems employing the IPS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.