The currents of n-p junctions and polarization effects caused by the capture processes of diffusion Si-receivers (detectors) of radiation exposed by ultrasound have been analyzed in this work. It was found that there are local concentrations of impurity atoms with an effective size l>6μm30μm in Si-n-p radiation receivers. They determine the behavior of the signal amplitude in different intervals of electric and temperature fields. It was found that at Е>1500V/cm and T>168K, the efficiency of collecting nonequilibrium charge carriers significantly increases and doublets of spectral α-lines and “humps” disappear at the temperature dependences of the signal amplitude. The main physical processes and mechanisms that determine the appearance of the phenomenon of "polarization" of Si-n-p-detectors were investigated. This phenomenon is caused by the existence of local gold atoms, which arise in the process of manufacturing technology of Si-n-p-receivers and act as effective trapping centers.
The paper presents an optimized manufacturing technology of silicon diffusion n-p detectors, as well as some research data on the spectrometric characteristics of silicon diffusion detectors of charged particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.