The optimization of heating temperature of black tea samples for the measurement of aroma with electronic nose (e-nose) has been successfully performed. Sample heating is done because black tea has a low aroma intensity and easily lost. However, the selection of such temperature should be selective because it can result in damage to the aroma of the sample. Therefore, temperature optimization needs to be done so that the resulting sensor response comes from the transformation of the undamaged aroma.The method used to obtain the optimum heating temperature by analyzing the sensor response of the aroma transformation that is captured by e-nose. Consistency and pattern changes formed from the sensor response are used as a comparison of optimal heating temperature selection. The measured sample varied in temperature (30 - 60 °C) so that the resulting sensor response was observed. Change in patterns indicate the aroma has been burning. After optimal temperature is obtained then black tea (50 gr) Broken Orange Pokoe, Broken Pokoe II and Bohea with a total sample of 300 bags were measured with e-nose. For further analysis, the result of classification by method of Principal Component Analysis (PCA) as proof of sample heating temperature optimization successfully done.The experimental results show optimal sample heating for black tea 3 quality 40 - 45 °C. After then with the third PCA the sample can be classified up to 92.5% of the total data variant. This indicates the aroma of tea is relatively constant and there is no pattern change.
During this time to clasify quality of cacao based on color and aroma involving human taster. But this cacao tester still has weaknesses such as subjective. Besides that, the standard chemical analytical methods requires a high cost and need expertise to analyzing it. Basically aroma of cacao is determined by volatile compounds such aldehid and alcohol. Electronic nose based on unselected gas sensor array has the ability to analyze samples with complex compositions that can be known characteristics and qualitative analysis of the samples. Stimulus aroma is transformed by electronic nose into fingerprint data then it is used by feature extraction process using the differential method. The results of feature extraction is used to process the neuro fuzzy training to obtain optimal parameters. The parameters have been optimized is then tested on cacao. Based on test results, neuro fuzzy can clasify samples with 95,21% accuracy rate so that the clasification of cacao quality with electronic nose using neuro fuzzy has been successfully carried out.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.