The effect of the electron energy distribution function (EEDF) on the behavior of the electron density (ne) is investigated under various gas pressures of nitrogen (N2) in inductively coupled plasma (ICP) operated at low and high input powers. A Langmuir probe is used to measure the EEDFs and electron densities, and the antenna coil current is measured to obtain the absorbed power in the plasma (Pabs). At gas pressures above 2.67 Pa (20 mTorr) and 2500 W, Pabs increases continually with increasing the gas pressure, but the electron density slightly decreases. In this case, the EEDF has a Maxwellian distribution with a high-energy tail. On the other hand, at 300 W, Pabs decreases slightly with increasing gas pressure, but the electron density dramatically decreases, and the EEDF evolves from a bi-Maxwellian to a non-Maxwellian distribution with substantially highly depleted high-energetic part (high-energy tail). To analyze the difference in the behavior of the decrease rate in electron density, the total energy loss per electron-ion pair lost (εT) is measured through the probe diagnostics, and the measured electron density is compared with the calculated electron density from the global model. An additional experiment is performed in Ar plasma under the same discharge conditions as N2 plasma to compare the EEDF effect. This study provides experimental evidence that the EEDF has a decisive effect on the behavior of the electron density in plasmas.
In 2001, we conducted a study to assess the effects of differential arrival times and nest-site selection on reproductive performance in a mixed-species heronry consisting of six species in Taeseong-ri, Chungbuk, Korea. We recorded the arrival dates, nest heights, clutch sizes, and brood sizes after 15Á20 days of the age of the birds' chicks. The grey herons and cattle egrets arrived first and last, respectively, on the colony site. In the homogenous vegetation structure of the breeding site, the pitch pine trees (Pinus rigida) were mainly used for building nests on 48 of the 50 pine trees (96%). The breeding species vertically stratifies the nest sites according to their body size, except for the cattle egrets and black-crowned night herons that nested at sites higher than those predicted from their body size. The mean nest success rates of the six species under study were positively correlated with the mean nest heights. Our findings suggest that aggressive interspecific interactions among neighbors influence nest-site selection to enhance breeding success.
CO2 inductively coupled plasmas (ICPs) were generated using a radio frequency power of 13.56 MHz at 100 mTorr. Electron energy distribution functions (EEDFs) were measured using a single Langmuir probe, and various plasma parameters such as the electron density and electron temperature were obtained from the measured EEDFs. EEDFs with multislope structures are obtained. However, changes in the gas composition in the ICP were observed via optical emission spectroscopy. The electron density barely increases when a sudden change in the gas composition occurs. The E to H mode transition occurs at a stationary gas composition as the absorbed power increases. The EEDFs of CO2 plasma, CO plasma, and O2 plasma were calculated using BOLSIG+, which is a two term Boltzmann solver [G. Hagelaar and L. Pitchford, Plasma Sources Sci. Technol. 14(4), 722 (2005)]. The measured EEDF is closest to the EEDF of the CO plasma.
We developed a hybrid plasma source combined with an inductively coupled plasma (ICP) antenna and a capacitively coupled plasma (CCP) electrode. The ICP antenna and the CCP electrode are connected to a single RF power generator in parallel and a variable capacitor Cv is connected to the ICP antenna in series. The currents flowing through each source and the CCP electrode voltage are measured for analysis of the electrical characteristics, and the ion densities are measured while adjusting the capacitance of the Cv. Interestingly, when a series LC resonance occurs between the inductance of the ICP antenna and the capacitance of the Cv, different trends are observed depending on the discharge mode. In capacitive mode (E-mode), the ion density is minimized and is controlled by the CCP current. On the other hand, in inductive mode (H-mode), the ion density is maximized and is affected by the ICP current. The change of the ion density can be explained by the balance between the total power absorption and power dissipation. It is also in good qualitative agreement with the calculated plasma density from the power balance equation. By adjusting the Cv, linear control of the ion density can be achieved. To evaluate the proposed source in terms of O atom generation, the number density ratio of O atom nO to Ar nAr is obtained by using the optical emission spectroscopy actinometry method. These results show that nO/nAr is controlled. Our source can be applied to plasma processing, in which ion density and O atom generation controls are important factors.
Decomposition of carbon dioxide is studied using Ar/CO 2 mixture inductively coupled plasmas (ICP). Argon gas was added to generate plasma which has high electron density. To measure decomposition rate of CO 2 , optical emission actinometry is used. Changing input power, pressure and mixture ratio, the plasma parameters and the spectrum intensity were measured using single Langmuir probe and spectroscope. The source characteristic of Carbon dioxide ICP observed from the obtained plasma parameters. The decomposition rate is evolved depending on the reaction and discharge mode. This result is analyzed with both the measurement of the plasma parameters and the dissociation mechanism of CO 2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.