Background/Aim: To evaluate the early effect of radiation dose on liver function in breast cancer patients undergoing free-breathing volumetric modulated arc therapy (FB-VMAT). Patients and Methods: Medical records of 125 patients with breast cancer who underwent curative surgery followed by postoperative radiotherapy using FB-VMAT during 2018-2021 were reviewed. Results of the liver function test (LFT), performed within 1-week before and 6months after radiotherapy, were collected and compared. The LFTs analyzed albumin, total and direct bilirubin, aspartate transaminase, alanine transferase, and alkaline phosphatase levels. The mean dose and relative liver volume receiving at least 10 Gy, 20 Gy, or 30 Gy were calculated. Results: Median follow-up time was 21.4 months. One patient experienced locoregional and distant failures. The mean liver irradiation dose was 325.9 centigray (cGy) for all patients. The liver irradiation dose was higher in patients with right breast cancer than in those with left breast cancer (mean, 434.1 cGy vs. 260.6 cGy, p<0.001). Direct bilirubin and aspartate transaminase levels showed significant differences after FB-VMAT. LFT results outside normal limits were noted in 31 patients at follow-up, but nobody met the criteria of radiation-induced liver disease. Underlying liver disease, breast laterality, systemic treatment, or dosevolume histogram parameters were not associated with abnormal LFT results. Conclusion: FB-VMAT can deliver radiation doses safely without adversely affecting the liver. The mean dose ≤4 Gy could be a useful dose criterium of the liver for FB-VMAT plans.Radiotherapy (RT) is the mainstay of locoregional treatment for breast cancer and is routinely performed following breast-conserving surgery (BCS) (1) or selectively administered after total mastectomy (TM) (2) to reduce locoregional recurrence and breast cancer mortality. Because the breasts are located on the anterior surface of the chest wall, radiation doses can be delivered in a relatively simple manner using a technique consisting of two opposite angles, called traditional tangential-field radiation therapy (TFRT). However, TFRT inevitably passes through several organs at risk (OARs), such as the heart, lung, and liver. Concerns of risks including the ischemic heart disease (3) and radiation pneumonitis (4) have motivated the introduction of advanced RT techniques that can spare OARs. 1937
This paper proposes a new vision-based fire detection method for real-life application. Most previous vision-based methods using color information and temporal variations of pixels produce frequent false alarms due to the use of many heuristic features. Plus, there is usually a computation delay for accurate fire detection. Thus, to overcome these problems, candidate fire regions are first detected using a background model and color model of fire. Probabilistic models of fire are then generated based on the fact that fire pixel values in consecutive frames change constantly and these models are applied to a Bayesian Network. This paper uses a three-level Bayesian Network that contains intermediate nodes, and uses four probability density functions for evidence at each node. The probability density functions for each node are modeled using the skewness of the color red and three high frequency components obtained from a wavelet transform. The proposed system was successfully applied to various fire-detection tasks in real-world environments and effectively distinguished fire from fire-colored moving objects.
Background To evaluate the combined effect of rotational error and dose gradient on target dose coverage in frameless stereotactic radiotherapy. Methods Three spherical targets of different diameters (1, 1.5, and 2 cm) were drawn and placed equidistantly on the same axial brain computed tomography (CT) images. To test the different isocenter-target distances, 2.5- and 5-cm configurations were prepared. Volumetric modulated arc therapy plans were created for different dose gradients from the target, in which the dose gradients were modified using the maximum dose inside the target. To simulate the rotational error, CT images and targets were rotated in two ways by 0.5°, 1°, and 2°, in which one rotation was in the axial plane and the other was in three dimensions. The initial optimized plan parameters were copied to the rotated CT sets, and the doses were recalculated. The coverage degradation after rotation was analyzed according to the target dislocation and 12-Gy volume. Results A shallower dose gradient reduced the loss of target coverage under target dislocation, and the effect was clearer for small targets. For example, the coverage of the 1-cm target under 1-mm dislocation increased from 93 to 95% by increasing the Paddick gradient index from 5.0 to 7.9. At the same time, the widely accepted necrosis indicator, the 12-Gy volume, increased from 1.2 to 3.5 cm3, which remained in the tolerable range. From the differential dose volume histogram (DVH) analysis, the shallower dose gradient ensured that the dose-deficient under-covered target volume received a higher dose similar to that in the prescription. Conclusions For frameless stereotactic brain radiotherapy, the gradient, alongside the margin addition, can be adjusted as an ancillary parameter for small targets to increase target coverage or at least limit coverage reduction in conditions with probable positioning error.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.