Summary Phagocytosis and autophagy are two important and related arms of the host's first-line defense against microbial invasion. Rubicon is a RUN domain containing cysteine-rich protein that functions as part of a Beclin-1-Vps34-containing autophagy complex. We report that Rubicon is also an essential, positive regulator of the NADPH oxidase complex. Upon microbial infection or Toll-like-receptor 2 (TLR2) activation, Rubicon interacts with the p22phox subunit of the NADPH oxidase complex, facilitating its phagosomal trafficking to induce a burst of reactive oxygen species (ROS) and inflammatory cytokines. Consequently, ectopic expression or depletion of Rubicon profoundly affected ROS, inflammatory cytokine production, and subsequent antimicrobial activity. Rubicon's actions in autophagy and in the NADPH oxidase complex are functionally and genetically separable, indicating that Rubicon functions in two ancient innate immune machineries, autophagy and phagocytosis, depending on the environmental stimulus. Rubicon may thus be pivotal to generating an optimal intracellular immune response against microbial infection.
Expression of CXCL9, -10, -11, and CXCR3 increased in the tear film and ocular surface of patients with dry eye syndrome, especially in those with Sjögren's syndrome. CXCL11 levels correlated significantly with various tear film and ocular surface parameters. (ClinicalTrials.gov number, NCT00991679.).
This paper presents novel Ultrareliable and lowlatency communication (URLLC) techniques for URLLC services, such as Tactile Internet services. Among typical use-cases of URLLC services are tele-operation, immersive virtual reality, cooperative automated driving, and so on. In such URLLC services, new kinds of traffic such as haptic information including kinesthetic information and tactile information need to be delivered in addition to high-quality video and audio traffic in traditional multimedia services. Further, such a variety of traffic has various characteristics in terms of packet sizes and data rates with a variety of requirements of latency and reliability. Furthermore, some traffic may occur in a sporadic manner but require reliable delivery of packets of medium to large sizes within a low latency, which is not supported by current state-of-the-art wireless communication systems and is very challenging for future wireless communication systems. Thus, to meet such a variety of tight traffic requirements in a wireless communication system, novel technologies from the physical layer to the network layer need to be devised. In this paper, some novel physical layer technologies such as waveform multiplexing, multiple access scheme, channel code design, synchronization, and full-duplex transmission for spectrally-efficient URLLC are introduced. In addition, a novel performance evaluation approach, which combines a ray-tracing tool and system-level simulation, is suggested for evaluating the performance of the proposed schemes. Simulation results show the feasibility of the proposed schemes providing realistic URLLC services in realistic geographical environments, which encourages further efforts to substantiate the proposed work 1 .
The use of bicistronic vectors, which contain two target genes under one promoter, has been the most common practice for the heterologous production of binary protein complexes. The major problem of this method is the much lower expression of the second gene compared with that of the first gene next to the promoter. We tested a simple idea of whether inclusion of an additional promoter in front of the second gene may remove the problem. Compared with bicistronic vectors, corresponding two-promoter vectors yielded four to nine times larger amounts of the complexes between BCL-2 family proteins, BCL-X L :BAD, BCL-X L :BIM-S, and CED-9:EGL-1 in bacterial cells as a result of significantly increased expression of the second genes in a manner independent of the order of the target genes. With the two-promoter system, we produced two other complexes in large quantity suitable for extensive crystallization trial. The method does not accompany any technical disadvantages, and represents a significant improvement from the conventional method, which should enjoy wide application for the coexpression of binary or higher order protein complexes by extension.
RIG-I is a cytosolic receptor for non-self RNA that mediates immune responses against viral infections through IFNα/β production. In an attempt to identify novel tools that modulate IFNα/β production, we used SELEX technology to screen RNA aptamers that specifically target RIG-I protein. Most of the selected RIG-I aptamers contained polyU motifs in the second half regions that played critical roles in the activation of RIG-I-mediated IFNβ production. Unlike other known ligands, RIG-I aptamer bound and activated RIG-I in a 5′-triphosphate-independent manner. The helicase and RD domain of RIG-I were used for aptamer binding, but intact RIG-I protein was required to exert aptamer-mediated signaling activation. Furthermore, replication of NDV, VSV and influenza virus in infected host cells was efficiently blocked by pre- or post-treatment with RIG-I aptamer. Based on these data, we propose that RIG-I aptamer has strong potential to be an antiviral agent that specifically boosts the RIG-I-dependent signaling cascade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.