The fate and interactions with river organisms of zooplankton as they drift downriver from a reservoir on a fourth-order mountain stream (Hiji River, Japan) were investigated. Monthly samples were collected at the reservoir and six river sites, simultaneously, from May 2005 to May 2006. Aquatic macroinvertebrates and fish were colleted, and their stomach contents were analyzed in April and May, 2006, respectively. Drift from the reservoir was the primary source for the river plankton community; the abundance of zooplankton, particularly those of cladocerans and large rotifer, rapidly decreased within several kilometers of the dam. Analysis of the contents of fish stomachs showed that drifting zooplankton was the main food for fish, with strong food selectivity for cladocerans and large rotifers. However, fish and insect planktivores showed longitudinally different stomach contents, with progressively fewer zooplankton found in the stomachs at the downriver sites. The results suggest that the outflow of zooplankton from the reservoir is an important food source for the downstream predators, especially fish, but the drift of zooplankton and consequent food availability for the predators at lower sites are strongly limited by concentrated fish predation just below the reservoir dam.
Subsidy between ecosystems has been considered in many natural ecosystems, and should alter food webs and communities in human-impacted ones. We estimated how drifting plankton from a reservoir contribute to downstream food webs and showed that they alter community structures over a 10-km reach below the dam. To estimate the contribution of the drifting plankton to macroinvertebrates, we used C and N isotopes and an IsoSource mixing model. In spring and autumn, contributions of plankton to collector-filterer species were highest 0.2 km downstream of the dam, and clearly decreased from 0.2 to 10 km. At 0.2 km, the contribution of plankton to a predator stonefly was remarkably high. These results indicated that drifting plankton from a dam reservoir could subsidize downstream food webs and alter their energy base, but the importance of this subsidy decreased as distance from the reservoir increased. The general linear models indicated that the abundance of collector-filterers and predators was related positively to zooplankton density in stream water. Thus, food source alteration by drifting plankton also influenced the community structures downstream of the dam.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.