Variations and alterations of copy numbers (CNVs and CNAs) carry disease susceptibility and drug responsiveness implications. Although there are many molecular methods to measure copy numbers, sensitivity, reproducibility, cost, and time issues remain. In the present study, we were able to solve those problems utilizing our modified real competitive PCR method with cloned competitors (mrcPCR). First, the mrcPCR for ERBB2 copy number was established, and the results were comparable to current standard methods but with a shorter assay time and a lower cost. Second, the mrcPCR assays for 24 drug-target genes were established, and the results in a panel of NCI-60 cells were comparable to those from real-time PCR and microarray. Third, the mrcPCR results for FCGR3A and the FCGR3B CNVs were comparable to those by the paralog ratio test (PRT), but without PRT's limitations. These results suggest that mrcPCR is comparable to the currently available standard or the most sensitive methods. In addition, mrcPCR would be invaluable for measurement of CNVs in genes with variants of similar structures, because combination of the other methods is not necessary, along with its other advantages such as short assay time, small sample amount requirement, and applicability to all sequences and genes.
PurposeThere are few reports from Asian countries about the long-term results of aromatase inhibitor adjuvant treatment for breast cancer. This observational study aimed to evaluate the long-term effects of letrozole in postmenopausal Korean women with operable breast cancer.MethodsSelf-reported quality of life (QoL) scores were serially assessed for 3 years during adjuvant letrozole treatment using the Korean version of the Functional Assessment of Cancer Therapy-Breast questionnaires (version 3). Changes in bone mineral density (BMD) and serum cholesterol levels were also examined.ResultsAll 897 patients received the documented informed consent form and completed a baseline questionnaire before treatment. Adjuvant chemotherapy was administered to 684 (76.3%) subjects, and 410 (45.7%) and 396 (44.1%) patients had stage I and II breast cancer, respectively. Each patient completed questionnaires at 3, 6, 12, 18, 24, 30, and 36 months after enrollment. Of 897 patients, 749 (83.5%) completed the study. The dropout rate was 16.5%. The serial trial outcome index, the sum of the physical and functional well-being subscales, increased gradually and significantly from baseline during letrozole treatment (p<0.001). The mean serum cholesterol level increased significantly from 199 to 205 after 36 months (p=0.042). The mean BMD significantly decreased from −0.39 at baseline to −0.87 after 36 months (p<0.001).ConclusionQoL gradually improved during letrozole treatment. BMD and serum cholesterol level changes were similar to those in Western countries, indicating that adjuvant letrozole treatment is well tolerated in Korean women, with minimal ethnic variation.
BackgroundThe concept of the utilization of rearranged ends for development of personalized biomarkers has attracted much attention owing to its clinical applicability. Although targeted next-generation sequencing (NGS) for recurrent rearrangements has been successful in hematologic malignancies, its application to solid tumors is problematic due to the paucity of recurrent translocations. However, copy-number breakpoints (CNBs), which are abundant in solid tumors, can be utilized for identification of rearranged ends.MethodAs a proof of concept, we performed targeted next-generation sequencing at copy-number breakpoints (TNGS-CNB) in nine colon cancer cases including seven primary cancers and two cell lines, COLO205 and SW620. For deduction of CNBs, we developed a novel competitive single-nucleotide polymorphism (cSNP) microarray method entailing CNB-region refinement by competitor DNA.ResultUsing TNGS-CNB, 19 specific rearrangements out of 91 CNBs (20.9%) were identified, and two polymerase chain reaction (PCR)-amplifiable rearrangements were obtained in six cases (66.7%). And significantly, TNGS-CNB, with its high positive identification rate (82.6%) of PCR-amplifiable rearrangements at candidate sites (19/23), just from filtering of aligned sequences, requires little effort for validation.ConclusionOur results indicate that TNGS-CNB, with its utility for identification of rearrangements in solid tumors, can be successfully applied in the clinical laboratory for cancer-relapse and therapy-response monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.