The 3-ketosteroid-delta 1-dehydrogenase (KS1DH) gene of Arthrobacter simplex IFO12069 cloned in Streptomyces lividans was overexpressed, resulting in production of the enzyme both extracellularly and intracellularly. The enzyme was purified by ammonium sulfate fractionation and chromatographies using DEAE-Toyopearl, Butyl-Toyopearl and Toyopearl HW55S from the supernatant of culture broth and cell-free extracts of S. lividans, and both preparations showed the same characteristics. The N-terminal amino acid sequence of both KS1DHs was M-D-W-A-E-E-Y-D, which coincided with the amino acid sequence deduced from the nucleotide sequence. Thus, the extracellular enzyme may derived from leakage of S. lividans cells during cultivation rather than secretion by processing of the signal sequence. The molecular weight of the enzyme was about 55,000, identical with the size deduced from the nucleotide sequence (M(r) 54,329). The optimum conditions for its activity were pH 10.0 and 40 degrees C. The enzyme catalyzed the conversion of several 3-keto-steroids, but those containing 11 alpha- or 11 beta-hydroxyl group were converted at low rates. The amino acid sequence of KS1DH from A. simplex is similar to those of KS1DH of Pseudomonas testosteroni and fumarate reductase from Shewanella putrefaciens.
A new metabolite of cholesterol was found in reaction mixtures containing cholesterol or 4-cholesten-3-one as a substrate and extra- or intracellular protein extracts from recombinant Streptomyces lividans and Escherichia coli strains carrying cloned DNA fragments of Streptomyces sp. SA-COO, the producer of Streptomyces cholesterol oxidase. The new metabolite was identified as 4-cholesten-6-ol-3-one based on comparisons of its high-performance liquid chromatography, gas chromatography/mass spectrometry, infrared and proton-nuclear magnetic resonance spectra with those of an authentic standard. Genetic analyses showed that the enzyme responsible for the production of 4-cholesten-6-ol-3-one is cholesterol oxidase encoded by the choA gene. Commercially purified cholesterol oxidase (EC 1.1.3.6.) of a Streptomyces sp., as well as of Brevibacterium sterolicum and a Pseudomonas sp., and a highly purified recombinant Streptomyces cholesterol oxidase were also able to catalyse the 6-hydroxylation reaction. Hydrogen peroxide accumulating in the reaction mixtures as a consequence of the 3 beta-hydroxysteroid oxidase activity of the enzyme was shown to have no role in the formation of the 6-hydroxylated derivative. We propose a possible scheme of a branched reaction pathway for the concurrent formation of 4-cholesten-3-one and 4-cholesten-6-ol-3-one by cholesterol oxidase, and the observed differences in the rate of formation of the 6-hydroxy-ketosteroid by the enzymes of different bacterial sources are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.