Maggot debridement therapy (MDT) is an application of sterile laboratory-reared blow fly larvae to remove necrotic tissue and disinfect wounds for medical conditions. For effective application, the blow fly larvae used in the wound treatment are required to be in aseptic condition. Here, we report the results of a detailed assessment of bacteria and fungi isolated from the eggs of two blow fly species, Chrysomya megacephala (F.) and Lucilia cuprina (Wiedemann) before and after sterilization by disinfectants Chlorhex-C, povidone-iodine, and sodium hypochlorite. We also assess the survival ability of larvae and their sterility after the cleansing process. The results indicate that the isolated microorganisms from the control group of both the species consisted of 10 species of gram-positive bacteria, 21 species of gram-negative bacteria, and 4 species of yeast. As for sterility testing, the eggs and the larvae of C. megacephala were found to have been completely sterilized after being subjected to thioglycollate medium for 5 days, leading to aseptic larvae. By contrast, some microorganisms from the bacterial culture were still detected in the L. cuprina larvae treated with Chlorhex-C and povidone-iodine. The survival ability of the larvae in both the species was not significantly different between the treated and the control groups. Due to its high disinfection efficacy in destroying microorganisms in both the blow fly eggs, sodium hypochlorite is recommended for preparing sterile larvae before using MDT.
Blow flies (Diptera: Calliphoridae) and the house fly (Diptera: Muscidae) are filth flies of medical importance, and control of their population is needed. As insecticide applications have resulted in fly resistance, and the exploration of plant essential oils (EOs) has increased against filth flies, this study assessed the combination of EOs with pyrethoids to enhance toxic efficacy. The EOs of five effective plants were screened initially against the house fly (Musca domestica L.). Their chemical constituent was performed using gas chromatography-mass spectrometry (GC-MS) analysis. The main components of Boesenbergia rotunda (Zingiberaceae) rhizome, Curcuma longa (Zingiberaceae) rhizome, Citrus hystrix (Rutaceae) fruit peel, Ocimum gratissimum (Lamiaceae) seed, and Zanthoxylum limonella (Rutaceae) fruit were δ-3-caren (35.25%), β-turmerone (51.68%), β-pinene (26.56%), p-cumic aldehyde (58.21%), and dipentene (60.22%), respectively. The screening test revealed that the three most effective plant EOs were from B. rotunda, C. longa and O. gratissimum, which were selected for the combination with two pyrethroid insecticides (permethrin and deltamethrin), in order to enhance their synergistic efficacy against the blow flies, Chrysomya megacephala Fabricius, Chrysomya rufifacies Macquart, and Lucilia cuprina Wiedemann, and the house fly. Synergistic action was presented in almost all of the flies tested with permenthrin/deltamethrin/EOs mixtures. It was interesting that the combination of deltamethrin with three EOs showed a synergistic effect on all of the tested flies. However, an antagonistic effect was observed in C. megacephala and M. domestica treated with permethrin-B. rotunda and C. megacephala treated with permethrin-O. gratissimum. The LD50 of insecticides decreased when combined with plant EOs. This alternative strategy will be helpful in developing a formula for effective fly control management.
This is the first study to report Chrysomya pinguis (Walker) and Lucilia porphyrina (Walker) (Diptera: Calliphoridae) as forensically important blow fly species from human cadavers in Thailand, in addition to Chrysomya villeneuvi (Patton) already known in Thailand. In 2016, a fully decomposed body of an unknown adult male was discovered in a high mountainous forest during winter in Chiang Mai province. The remains were infested heavily with thousands of blow fly larvae feeding simultaneously on them. Morphological identification of adults reared from the larvae, and molecular analysis based on sequencing of 1,247 bp partial mitochondrial cytochrome c oxidase subunit 1 gene (CO1) of the larvae and puparia, confirmed the above mentioned 3 species. The approving forensic fly evidence by molecular approach was described for the first time in Thailand. Moreover, neighbor-joining phylogenetic analysis of the CO1 was performed to compare the relatedness of the species, thereby affirming the accuracy of identification. As species of entomofauna varies among cases in different geographic and climatic circumstances, C. pinguis and L. porphyrina were added to the list of Thai forensic entomology caseworks, including colonizers of human remains in open, high mountainous areas during winter. Further research should focus on these 3 species, for which no developmental data are currently available.
Mosquitoes are hematophagous insects that transmit parasites and pathogens with devastating effects on humans, particularly in subtropical regions. Different mosquito species display various behaviors, breeding sites, and geographic distribution; however, they can be difficult to distinguish in the field due to morphological similarities between species and damage caused during trapping and transportation. Vector control methods for controlling mosquito-borne disease epidemics require an understanding of which vector species are present in the area as well as the epidemiological patterns of disease transmission. Although molecular techniques can accurately distinguish between mosquito species, they are costly and laborious, making them unsuitable for extensive use in the field. Thus, alternative techniques are required. Geometric morphometrics (GM) is a rapid and inexpensive technique that can be used to analyze the size, shape, and shape variation of individuals based on a range of traits. Here, we used GM to analyze the wings of 1,040 female mosquitoes from 12 different species in Thailand. The right wing of each specimen was removed, imaged microscopically, and digitized using 17 landmarks. Wing shape variation among genera and species was analyzed using canonical variate analysis (CVA), while discriminant function analysis was used to cross-validate classification reliability based on Mahalanobis distances. Phenetic relationships were constructed to illustrate the discrimination patterns for genera and species. CVA of the morphological variation among Aedes, Anopheles, Armigeres, Culex, and Mansonia mosquito genera revealed five clusters. In particular, we demonstrated a high percentage of correctly-distinguished samples among Aedes (97.48%), Armigeres (96.15%), Culex (90.07%), and Mansonia (91.67%), but not Anopheles (64.54%). Together, these findings suggest that wing landmark-based GM analysis is an efficient method for identifying mosquito species, particularly among the Aedes, Armigeres, Culex, and Mansonia genera.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.