Polyvinyl alcohol with different cellulose nanocrystals (CNC) content extracted from rice straw were prepared by using solution casting method and their biodegradability in natural soil burial were studied. Ethanedioic acid (EA) was introduced as a crosslinker. The synthesized noncrosslinked and crosslinked PVOH/CNC nanocomposites films and their biodegradation were characterized with Fourier transform infrared spectroscopy (FTIR), tensile test, weight loss, Field Emission Scanning Electron Microscopy (FESEM), differential scanning calorimetry (DSC). The changes in chemical properties before and after biodegradation were confirmed through FTIR. Tensile test revealed that the tensile strength and elongation at break reduced as time of soil burial increases. Morphological study showed the extent of surface deterioration before and after soil burial, where the addition of CNC displayed greater deterioration. Melting temperature and crystallinity increased with addition of CNC but decreased after crosslinking. However, melting temperature and crystallinity of all nanocomposites increased after biodegradation. PVOH degrading bacteria were isolated and identified to be Bacillus cereus strain CCM 2010 and Bacillus cereus strain ATCC 14579. Biodegradation of the bionanocomposites were concluded to be in the following decreasing order: PVOH/CNC > PVOH/EA/CNC > PVOH > PVOH/EA.
In this study, cellulose nanocrystals (CNC) were extracted from rice straw and incorporated into polyvinyl alcohol (PVOH) as reinforcement nanofillers. Multiple nanocomposites with different CNC contents were prepared. Extracted CNC appear as long, well-defined rodlike crystals with a high aspect ratio (41). Nanocomposites with 3 wt% of CNC significantly exhibit improved tensile strength (60.4%) and maximum degradation temperature (287°C). Moreover, they demonstrate a decrease in water vapor permeability rate and in the swelling and solubility indices of PVOH/CNC. Significant improvements were observed when nanocomposites were crosslinked specifically in terms of tensile strength (104.8%) and maximum degradation temperature (364°C). They also demonstrate greatly reduced water vapor permeability rate, swelling, and solubility indices. The optimum CNC amount for both nanocomposites is 3 wt%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.