Five distinct discharge modes are observed in a cylindrically-symmetric helicon reactor. Each mode is characterized by its plasma impedance, wave mode structure, density distribution and floating potential structure. It is shown that the lowest two modes are capacitive (E) and inductive (H), while higher modes are helicon wave (W) modes. Successive wave modes are found to correspond to helicon wave cavity resonances of the plasma-filled vacuum vessel, each with a well defined wavevector, density and impedance. Measured wavevectors and densities are in agreement with the helicon wave dispersion relation. The first helicon discharge mode is found to be an m = ±1 mode, as expected for a double saddle field antenna. Unexpectedly, the second and third helicon modes have an m = 0 azimuthal symmetry.
We propose two models to discuss the behavior of the selective etching of SiO2 to the underlying Si3N4 with changing wafer surface temperatures. For this investigation, three specimens, SiO2, Si3N4, and poly-Si, which are nonpatterned, photoresist-patterned, and poly-silicon-patterned, respectively, have been etched in a surface wave plasma system equipped with an electrostatic chuck for wafer temperature control. The coolant temperature, which controls the wafer temperature, has been changed from −20 to 50 °C. For the nonpatterned wafer, the etch rates of SiO2, Si3N4, and poly-Si increase and the selectivities decreases with wafer temperature. However, for the samples patterned with either photoresist or poly-Si, the etch rates of SiO2 decrease with wafer temperature. The temperature rise also leads to an enhancement of selectivity of SiO2/Si3N4, and the steeper profile angles. The presence of a masking layer, even for the poly-Si-patterned samples, results in a different etching behavior. This is because the sticking probability of the polymer precursor becomes smaller on the sidewall of the profile with the temperature increase. Therefore the thickness of polymer on the sidewall of the contact hole decreases, and the thickness of polymer on the bottom increases as the wafer temperature goes up. Comparing photoresist-patterned samples with poly-Si-patterned ones, we can corroborate the role of the photoresist mask layer, which provides a higher carbon-to-fluorine ratio at the near surface. The carbon enrichment accelerates more steeply the etch rate decrement of the substrate layer. In summary, there are two main contributions attributed by the substrate temperature: changing the sticking coefficient of the fluorocarbon precursor and enhancing the photoresist erosion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.