Cytotherapy with mesenchymal stem cells (MSCs) has been studied in many species, and
often requires in vitro cell expansion to obtain therapeutic doses of
stem cells. Because the characteristics of MSCs, such as self-renewal and multi-lineage
differentiation, can be altered by long-term culture, it is important to maintain stemness
during cultivation. This study assessed the changes in the characteristics of feline
adipose tissue-derived (fAT)-MSCs during in vitro passaging. Stem cells
isolated from the adipose tissue of donor cats were cultured for seven sub-passages.
Proliferation capacity was analyzed by calculating the cell doubling time and by
colorimetric assay. Expression of stem cell-specific markers was evaluated by quantitative
reverse transcription (qRT)-PCR and immunophenotyping. Expression of adipogenic and
osteogenic differentiation markers was also measured by qRT-PCR. Histochemical staining
and measurement of β-galactosidase activity were conducted to detect cellular senescence.
The cell proliferation rate decreased significantly at passage 5 (P5). Gene expression
levels of pluripotency markers (Sox2, Nanog and
Klf4) and stem cell surface markers (CD9,
CD44, CD90 and CD105) decreased
during continuous culture; in most assays, statistically significant changes were observed
at P5. The ability of cells to undergo adipogenic or osteogenic differentiation was
inversely proportional to the number of passages. The proportion of senescent cells
increased with the number of passages. These results suggest that repeated passages alter
the proliferation and multipotency of fAT-MSCs. In clinical trials, early-passage cells
should be used to achieve the maximum therapeutic effect.
Severe acute pancreatitis (SAP) is associated with systemic complications and high mortality rate in dogs. Mesenchymal stem cells (MSCs) have been investigated for their therapeutic potential in several inflammation models. In the present study, the effects of canine adipose tissue-derived (cAT)-MSCs in a rat model of SAP induced by retrograde injection of 3% sodium taurocholate solution into the pancreatic duct were investigated. cAT-MSCs labeled with dioctadecyl-3,3,3′-tetramethylindo-carbocyanine perchlorate (1 × 107 cells/kg) were systemically administered to rats and pancreatic tissue was collected three days later for histopathological, quantitative real-time polymerase chain reaction, and immunocytochemical analyses. Greater numbers of infused cAT-MSCs were detected in the pancreas of SAP relative to sham-operated rats. cAT-MSC infusion reduced pancreatic edema, inflammatory cell infiltration, and acinar cell necrosis, and decreased pancreatic expression of the pro-inflammatory cytokines tumor necrosis factor-α, interleukin (IL)-1β, -6, -12, -17, and -23 and interferon-γ, while stimulating expression of the anti-inflammatory cytokines IL-4 and IL-10 in SAP rats. Moreover, cAT-MSCs decreased the number of clusters of differentiation 3-positive T cells and increased that of forkhead box P3-positive T cells in the injured pancreas. These results indicate that cAT-MSCs can be effective as a cell-based therapeutic strategy for treatment of SAP in dogs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.