Outer membrane vesicles (OMVs) are produced by various pathogenic Gram-negative bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii. In this study, we isolated OMVs from a representative soil bacterium, Pseudomonas putida KT2440, which has a biodegradative activity toward various aromatic compounds. Proteomic analysis identified the outer membrane proteins (OMPs) OprC, OprD, OprE, OprF, OprH, OprG, and OprW as major components of the OMV of P. putida KT2440. The production of OMVs was dependent on the nutrient availability in the culture media, and the up- or down-regulation of specific OMPs was observed according to the culture conditions. In particular, porins (e.g., benzoate-specific porin, BenF-like porin) and enzymes (e.g., catechol 1,2-dioxygenase, benzoate dioxygenase) for benzoate degradation were uniquely found in OMVs prepared from P. putida KT2440 that were cultured in media containing benzoate as the energy source. OMVs of P. putida KT2440 showed low pathological activity toward cultured cells that originated from human lung cells, which suggests their potential as adjuvants or OMV vaccine carriers. Our results suggest that the protein composition of the OMVs of P. putida KT2440 reflects the characteristics of the total proteome of P. putida KT2440.
Three hundred and thirty two bacterial colonies were isolated from soil contaminated by an oil spill. All the bacteria were cultured in a liquid medium individually, and the surface tensions of the media were compared. The bacterium whose culture medium had the lowest surface tension was identified as Pseudomonas sp. G11. A biosurfactant was produced by cultivation of the Pseudomonas sp. G11 in the LB media. For extraction of the biosurfactant, two solvent systems were used (n-hexane and a 2:1 (v/v) mixture of chloroform/MeOH), and the results were compared. Various experimental conditions (solvent composition, flow rate, etc.) were tested to optimize the analysis of the biosurfactant by asymmetrical flow field-flow fractionation (AsFlFFF). The biosurfactant was successfully separated from the culture medium by AsFlFFF when pure water was used as the carrier. From the retention data, the hydrodynamic diameter (dH) and molecular weight (M) of the biosurfactant were determined by AsFlFFF. The molecular weight was determined by using pullulans as the calibration standards. The dH and M were 49 nm and 2.3 x 10(5) Da when extracted with n-hexane, and 39 nm and 1.13 x 10(5) Da when extracted with the 2:1 mixture of chloroform/MeOH, respectively.
We studied soil composition, N 2 O production, a number of denitrifying bacteria, community structure and T-RFLP patterns of denitrifying bacteria dependent on agricultural methods with the change of seasons. Analyses of the soil chemical composition revealed that total carbon and total organic carbon contents were 1.57% and 1.28% in the organic farming soil, 1.52% and 1.24% in the emptiness farming soil, and 1.40% and 0.95% in traditional farming soil, respectively. So, the amount of organic carbon was relatively high in the environment friendly farming soils than traditional farming soils. In case of N 2 O production, the amount of N 2 O production was high in May and November soils, but the rate of N 2 O production was fast in August soil. The average number of denitrifying bacteria were 1.32 × 10 4 MPN · g -1 in the organic farming soil, 1.17 × 10 4 MPN · g -1 in the emptiness farming soil, and 6.29 × 10 3 MPN · g -1 in the traditional farming soil. It was confirmed that the environment friendly farming soil have a larger number of denitrifying bacteria than the traditional farming soil. As a result of the phylogenetic analyses, it was confirmed that six clusters were included in organic farming soil among total 10 clusters. And the result of PCA profile distribution of T-RFLP pattern on agricultural methods, the range of distribution showed wide in the organic farming method, relatively narrow in the conventional farming method, and middle in the emptiness farming method. Therefore, we could concluded that the distribution and the community structure of denitrifying bacteria were changed according to the agricultural methods and seasons.
A bacterial strain belonging to the genus Atopobacter was isolated from a vaginal swab from a crab-eating macaque (Macaca fascicularis). Here, we report the draft genome sequence of this strain, AH10.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.