Cellulose nanofibrils are nano-scale materials with a diameter of several tens of nanometers. Cellulose nanofibrils' excellent mechanical and barrier properties make them attractive materials in the packaging industry. The morphology and crystallinity of obtained nano-cellulose greatly depend on the raw materials and the nano-fibrilization process. In this study, we investigated the effect of morphology and crystal structure of cellulose nanofibrils on coating performance, transparency, and barrier properties. Cellulose nanofibrils with a narrow diameter, high crystallinity and negative ion were fabricated as the concentration of the sulfuric acid was increased. As a result, post-treated cellulose nanofibrils could be easily coated due to narrow diameter and introduction of negative ion, and enhance oxygen barrier properties via the densely interconnected nanofiber surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.