Advances in nanotechnology have contributed to the development of novel nanoparticles that enable the tumor‐specific delivery of imaging probes and therapeutic agents in cancer imaging and therapy. Nanobiotechnology combines nanotechnology with molecular imaging, which has led to the generation of new multifunctional nanoparticles for cancer imaging and therapy. Multifunctional nanoparticles hold great promise for the future of cancer treatment because they can detect the early onset of cancer in each individual patient and deliver suitable therapeutic agents to enhance therapeutic efficacy. The combination of tumor‐targeted imaging and therapy in an all‐in‐one system provides a useful multimodal approach in the battle against cancer. Novel multifunctional nanoparticles thus offer a new avenue in the application of personalized medicine in the near future. Herein, new trends and the significance of novel multifunctional nanoparticles in cancer imaging and therapy are reviewed.
As an alternative to cell specific cancer targeting strategies (which are often afflicted with the heterogeneity of cancer cells as with most biological systems), a novel polymeric micelle constitute of two block copolymers of poly(L-lactic acid)-b-poly(ethylene glycol)-b-poly(L-histidine)-TAT (transactivator of transcription) and poly(L-histidine)-b-poly(ethylene glycol) was developed. The micelle formed via the dialysis method was approximately 95 nm in diameter and contained 15 wt. % of doxorubicin (DOX) by weight. The micelle surface hides TAT during circulation, which has the strong capability to translocate the micelle into cells, and exposes TAT at a slightly acidic tumor extracellular pH to facilitate the internalization process. The micelle core was engineered for disintegration in early endosomal pH of tumor cells, quickly releasing DOX. The ionization process of the block copolymers and ionized polymers assisted in disrupting the endosomal membrane. This processes permitted high DOX concentrations in the cytosol and its target site of the nucleus, thus increasing DOX potency in various wild and multidrug resistant (MDR) cell lines (3.8-8.8 times lower IC 50 than free DOX, depending on cell line). When tested with the xenografted tumors of human ovarian tumor drug-resistant A2780/AD, human breast tumor drug-sensitive MCF-7, human lung tumor A549 and human epidermoid tumor KB in a nude mice model, all tumors significantly regressed in size by three bolus injections at a dose of DOX 10 mg equivalent/kg body per injection of DOX-loaded micelle at three day interval, while minimum weight loss was observed. This approach may replace the need for cell-specific antibodies or targeting ligands, thereby providing a general strategy for solid tumor targeting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.