sity, where he directs the Engineering for Development program (e4d.mercer.edu). He has 20+ years of experience in water resources engineering, international development, and project management, including nearly a decade living and working in less-developed countries (as a Peace Corps Volunteer in Cameroon, an infrastructure and community development engineer in the Democratic Republic of Congo, Mali, and Mauritania, and an engineering for development researcher in Madagascar, Bolivia, South Africa, Mozambique, and the Dominican Republic).
This study contributes a bathtub‐style inundation prediction model with abstractions of coastal processes (i.e., storm surge and wave runup) for flood forecasting at medium‐range (weekly to monthly) timescales along the coastline of large lakes. Uncertainty from multiple data sources are propagated through the model to establish probabilistic bounds of inundation, providing a conservative measure of risk. The model is developed in a case study of the New York Lake Ontario shoreline, which has experienced two record‐setting floods over the course of three years (2017–2019). Predictions are developed at a parcel‐level and are validated using inundation accounts from an online survey and flyover imagery taken during the recent flood events. Model predictions are compared against a baseline, deterministic model that accounts for the same processes but does not propagate forward data uncertainties. Results suggest that a probabilistic approach helps capture observed instances of inundation that would otherwise be missed by a deterministic inundation model. However, downward biases are still present in probabilistic predictions, especially for parcels impacted by wave runup. The goal of the tool is to provide community planners and property owners with a conservative, parcel‐level assessment of flood risk to help inform short‐term emergency response and better prepare for future flood events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.