The yeast, , is an increasingly common cause of systemic fungal infections among the immune compromised, including premature infants. Adhesion to host surfaces is an important step in pathogenesis, but this process has not been extensively studied in this organism. A microfluidics assay was developed to test the ability of to adhere to immobilized host extracellular matrix proteins under physiologic fluid shear conditions. Growth in mammalian tissue culture media at 37°C for 3-6 hours led to induction of an adhesive phenotype at shear forces of 1-5 dynes/cm in some isolates of Glutamic acid, proline and calcium appeared to be the minimally necessary requirements for increased adhesion in these assays. To determine whether genes homologous to the gene family of were important for the adhesive phenotype, expression of 5 homologous genes were quantified using qPCR under conditions leading to increased adhesion. () and showed increased expression compared to control yeast. The extent of adhesion was variable among different isolates, and linear regression identified expression of but not to have a strong positive correlation with adhesion. A homozygous deletion strain was deficient in adhesion, whereas expression of in resulted in increased adhesion. Together, these data provide strong evidence that CpAls7 aids in the adherence of to extracellular matrix under shear forces and support its previously reported role in virulence.
Hypercalcemia remains a major impediment to the clinical use of vitamin D in cancer treatment. Approaches to remove hypercalcemia and development of nonhypercalcemic agents can lead to the development of vitamin D-based therapies for treatment of various cancers. In this report, in vitro and in vivo anticancer efficacy, safety, and details of vitamin D receptor (VDR) interactions of PT19c, a novel nonhypercalcemic vitamin D derived anticancer agent, are described. PT19c was synthesized by bromoacetylation of PTAD-ergocalciferol adduct. Broader growth inhibitory potential of PT19c was evaluated in a panel of chemoresistant breast, renal, ovarian, lung, colon, leukemia, prostate, melanoma, and central nervous system cancers cell line types of NCI60 cell line panel. Interactions of PT19c with VDR were determined by a VDR transactivation assay in a VDR overexpressing VDR-UAS-bla-HEK293 cells, in vitro VDR-coregulator binding, and molecular docking with VDR-ligand binding domain (VDR-LBD) in comparison with calcitriol. Acute toxicity of PT19c was determined in nontumored mice. In vivo antitumor efficacy of PT19c was determined via ovarian and endometrial cancer xenograft experiments. Effect of PT19c on actin filament organization and focal adhesion formation was examined by microscopy. PT19c treatment inhibited growth of chemoresistant NCI60 cell lines (log 10 GI50 ~ −4.05 to −6.73). PT19c (10 mg/kg, 35 days) reduced growth of ovarian and endometrial xenograft tumor without hypercalcemia. PT19c exerted no acute toxicity up to 400 mg/kg (QDx1) in animals. PT19c showed weak VDR antagonism, lack of VDR binding, and inverted spatial accommodation in VDR-LBD. PT19c caused actin filament dysfunction and inhibited focal adhesion in SKOV-3 cells. PT19c is a VDR independent nonhypercalcemic vitamin D-derived agent that showed noteworthy safety and efficacy in ovarian and endometrial cancer animal models and inhibited actin organization and focal adhesion in ovarian cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.