Purpose: Computable phenotypes are constructed to utilize data within the electronic health record (EHR) to identify patients with specific characteristics; a necessary step for researching a complex disease state. We developed computable phenotypes for resistant hypertension (RHTN) and stable controlled hypertension (HTN) based on the National Patient-Centered Clinical Research Network (PCORnet) common data model (CDM). The computable phenotypes were validated through manual chart review. Methods: We adapted and refined existing computable phenotype algorithms for RHTN and stable controlled HTN to the PCORnet CDM in an adult HTN population from the OneFlorida Clinical Research Consortium (2015-2017). Two independent reviewers validated the computable phenotypes through manual chart review of 425 patient records. We assessed precision of our computable phenotypes through positive predictive value (PPV) and test validity through interrater reliability (IRR). Results: Among the 156 730 HTN patients in our final dataset, the final computable phenotype algorithms identified 24 926 patients with RHTN and 19 100 with stable controlled HTN. The PPV for RHTN in patients randomly selected for validation of the final algorithm was 99.1% (n = 113, CI: 95.2%-99.9%). The PPV for stable controlled HTN in patients randomly selected for validation of the final algorithm was 96.5% (n = 113, CI: 91.2%-99.0%). IRR analysis revealed a raw percent agreement of 91% (152/167) with Cohen's kappa statistic = 0.87. Conclusions: We constructed and validated a RHTN computable phenotype algorithm and a stable controlled HTN computable phenotype algorithm. Both algorithms are based on the PCORnet CDM, allowing for future application to epidemiological and drug utilization based research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.