Migration is essential for maintaining genetic diversity among populations, and pumas (Puma concolor) provide an excellent model for studying the genetic impacts of migrants on populations isolated by increasing human development. In densely populated southern California, USA, puma populations on the east and west side of interstate highway 15 (I-15) have become fragmented into a small inbred population on the west side (Santa Ana Mountains) and a relatively larger, more diverse population on the east side (Eastern Peninsular Range). From 146 sampled pumas, genetic analyses indicate seven pumas crossed I-15 over the last 15 years, including four males from west to east, and three males from east to west. However, only a single migrant (named M86) was detected to have produced offspring and contribute to gene flow across the I-15 barrier. Prior to the M86 migration, the Santa Ana population exhibited inbreeding and had significantly lower genetic diversity than the Eastern Peninsular Range population. After M86 emigrated, he sired 11 offspring with Santa Ana females, decreasing inbreeding measures and raising heterozygosity to levels similar to pumas in the Eastern Peninsular Range. The emigration of M86 also introduced new alleles into the Santa Ana population, although allelic richness still remained significantly lower than the Eastern Peninsular population. Our results clearly show the benefit of a single migrant to the genetics of a small, isolated population. However, ongoing development and habitat loss on both sides of I-15 will increasingly strengthen the barrier to successful migration. Further monitoring, and potential human intervention, including minimizing development effects on connectivity, adding or improving freeway crossing structures, or animal translocation, may be needed to ensure adequate gene flow and long-term persistence of the Santa Ana puma population.
Phenotypic expression can be altered by direct perception of environmental cues (within-generation phenotypic plasticity) and by the environmental cues experienced by previous generations (transgenerational plasticity). Few studies, however, have investigated how the characteristics of phenotypic traits affect their propensity to exhibit plasticity within and across generations. We tested whether plasticity differed within and across generations between morphological and behavioral anti-predator traits of Physa acuta, a freshwater snail. We reared 18 maternal lineages of P. acuta snails over two generations using a full factorial design of exposure to predator or control cues and quantified adult F 2 shell size, shape, crush resistance, and anti-predator behavior -all traits which potentially affect their ability to avoid or survive predation attempts. We found that most morphological traits exhibited transgenerational plasticity, with parental exposure to predator cues resulting in larger and more crush-resistant offspring, but shell shape demonstrated within-generation plasticity. In contrast, we found that anti-predator behavior expressed only within-generation plasticity such that offspring reared in predator cues responded less to the threat of predation than control offspring. We discuss the consequences of this variation in plasticity for trait evolution and ecological dynamics. Overall, our study suggests that further empirical and theoretical investigation is needed in what types of traits are more likely to be affected by within-generational and transgenerational plasticity.
Conservation genetic techniques and considerations of the evolutionary potential of a species are increasingly being applied to species conservation. For example, effective population size (N e) estimates are useful for determining the conservation status of species, yet accurate estimates of current N e remain difficult to obtain. The effective population size can contribute to setting federal delisting criteria, as was done for the southern sea otter (Enhydra lutris nereis). After being hunted to near extinction during the North Pacific fur trade, the southern sea otter has recovered over part of its former range, but remains at relatively low numbers, making it desirable to obtain accurate and consistent estimates of N e. Although theoretical papers have compared the validity of several methods, comparisons of estimators using empirical data in applied conservation settings are limited. We combined thirteen years of demographic and genetic data from 1,006 sea otters to assess multiple N e estimators, as well as temporal trends in genetic diversity and population genetic structure. Genetic diversity was low and did not increase over time. There was no evidence for distinct genetic units, but some evidence for genetic isolation by distance. In particular, estimates of N e based on demographic data were much larger than genetic estimates when computed for the entire range of the population, but were similar at smaller spatial scales. The discrepancy between estimates at large spatial scales could be driven by cryptic population structure and/or individual differences in reproductive success. We recommend the development of new delisting criteria for the southern sea otter. We advise the use of multiple estimates of N e for other wide‐ranging species, species with overlapping generations, or with sex‐biased dispersal, as well as the development of improved metrics of genetic assessments of populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.