Abstract. Ecological surprises, substantial and unanticipated changes in the abundance of one or more species that result from previously unsuspected processes, are a common outcome of both experiments and observations in community and population ecology. Here, we give examples of such surprises along with the results of a survey of well-established field ecologists, most of whom have encountered one or more surprises over the course of their careers. Truly surprising results are common enough to require their consideration in any reasonable effort to characterize nature and manage natural resources. We classify surprises as dynamic-, pattern-, or intervention-based, and we speculate on the common processes that cause ecological systems to so often surprise us. A long-standing and still growing concern in the ecological literature is how best to make predictions of future population and community dynamics. Although most work on this subject involves statistical aspects of data analysis and modeling, the frequency and nature of ecological surprises imply that uncertainty cannot be easily tamed through improved analytical procedures, and that prudent management of both exploited and conserved communities will require precautionary and adaptive management approaches.
The community matrix is among ecology's most important mathematical abstractions, formally encapsulating the interconnected network of effects that species have on one another's populations. Despite its importance, the term "community matrix" has been applied to multiple types of matrices that have differing interpretations. This has hindered the application of theory for understanding community structure and perturbation responses. Here, we clarify the correspondence and distinctions among the Interaction matrix, the Alpha matrix, and the Jacobian matrix, terms that are frequently used interchangeably as well as synonymously with the term "community matrix."
The connection between the health of humans, animals, and the environments in which they live have been well recognized and have recently been referred to as one health, one medicine. An example of the interconnectedness of human, animal, and ecosystem health is provided by the situation facing southern sea otters off the US Pacific coast.
Conservation genetic techniques and considerations of the evolutionary potential of a species are increasingly being applied to species conservation. For example, effective population size (N
e) estimates are useful for determining the conservation status of species, yet accurate estimates of current N
e remain difficult to obtain. The effective population size can contribute to setting federal delisting criteria, as was done for the southern sea otter (Enhydra lutris nereis). After being hunted to near extinction during the North Pacific fur trade, the southern sea otter has recovered over part of its former range, but remains at relatively low numbers, making it desirable to obtain accurate and consistent estimates of N
e. Although theoretical papers have compared the validity of several methods, comparisons of estimators using empirical data in applied conservation settings are limited. We combined thirteen years of demographic and genetic data from 1,006 sea otters to assess multiple N
e estimators, as well as temporal trends in genetic diversity and population genetic structure. Genetic diversity was low and did not increase over time. There was no evidence for distinct genetic units, but some evidence for genetic isolation by distance. In particular, estimates of N
e based on demographic data were much larger than genetic estimates when computed for the entire range of the population, but were similar at smaller spatial scales. The discrepancy between estimates at large spatial scales could be driven by cryptic population structure and/or individual differences in reproductive success. We recommend the development of new delisting criteria for the southern sea otter. We advise the use of multiple estimates of N
e for other wide‐ranging species, species with overlapping generations, or with sex‐biased dispersal, as well as the development of improved metrics of genetic assessments of populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.