The understanding of manganese (Mn) biology, in particular its cellular regulation and role in neurological disease, is an area of expanding interest. Mn is an essential micronutrient that is required for the activity of a diverse set of enzymatic proteins (e.g., arginase and glutamine synthase). Although necessary for life, Mn is toxic in excess. Thus, maintaining appropriate levels of intracellular Mn is critical. Unlike other essential metals, cell-level homeostatic mechanisms of Mn have not been identified. In this review, we discuss common forms of Mn exposure, absorption, and transport via regulated uptake/exchange at the gut and blood-brain barrier and via biliary excretion. We present the current understanding of cellular uptake and efflux as well as subcellular storage and transport of Mn. In addition, we highlight the Mn-dependent and Mn-responsive pathways implicated in the growing evidence of its role in Parkinson's disease and Huntington's disease. We conclude with suggestions for future focuses of Mn health-related research.
Toxoplasma gondii, an intracellular protozoan parasite, is a major cause of opportunistic infectious disease affecting the brain and has been linked to an increased incidence of schizophrenia. In murine hosts, infection with T. gondii stimulates tryptophan degradation along the kynurenine pathway (KP), which contains several neuroactive metabolites, including 3-hydroxykynurenine (3-HK), quinolinic acid (QUIN) and kynurenic acid (KYNA). As these endogenous compounds may provide a mechanistic connection between T. gondii and the pathophysiology of schizophrenia, we measured KP metabolites in both brain and periphery of T. gondii-treated C57BL/6 mice 8 and 28 days post-infection. Infected mice showed early decreases in the levels of tryptophan in brain and serum, but not in the liver. These reductions were associated with elevated levels of kynurenine, KYNA, 3-HK and QUIN in the brain. In quantitative terms, the most significant increases in these KP metabolites were observed in the brain at 28 days post-infection. Notably, the anti-parasitic drugs pyrimethamine and sulfadiazine, a standard treatment of toxoplasmosis, significantly reduced 3-HK and KYNA levels in the brain of infected mice when applied between 28 and 56 days post-infection. In summary, T. gondii infection, probably by activating microglia and astrocytes, enhances the production of KP metabolites in the brain. However, during the first two months after infection, the KP changes in these mice do not reliably duplicate abnormalities seen in the brain of individuals with schizophrenia.
The kynurenine pathway (KP), the major catabolic route of the essential amino acid L-tryptophan (L-TRP), contains several neuroactive compounds, including kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK) and quinolinic acid (QUIN). The role of the D-enantiomer (D-TRP) in KP metabolism has received little attention so far. D-TRP can be converted to L-TRP by D-amino acid oxidase (D-AAO), and the same enzyme can produce D-kynurenine, a known bioprecursor of KYNA. To analyze these complex metabolic events systematically in vivo, we injected mice with D-TRP (300 mg/kg, i.p.) and examined KP metabolism in the absence or presence of the D-AAO inhibitor 3-methylpyrazole-5-carboxylic acid (MPC; 100 mg/kg, i.p.,). After 90 min, newly formed L-TRP was recovered in plasma, liver, forebrain and cerebellum, and MPC prevented its neosynthesis in all tissues. In the same animals, de novo production of D-kynurenine from D-TRP was also observed but was much higher in the periphery than in the brain. D-TRP administration raised KYNA, 3-HK, and QUIN levels in all tissues examined, and KYNA production from D-TRP was significantly reduced after pre-treatment with MPC. These results indicate that catabolic routes other than those classically ascribed to L-TRP and L-kynurenine can account for the synthesis of KYNA, 3-HK and QUIN in vivo.
Huntington’s disease (HD) is caused by a mutation in the huntingtin gene (HTT), resulting in profound striatal neurodegeneration through an unknown mechanism. Perturbations in the urea cycle have been reported in HD models and in HD patient blood and brain. In neurons, arginase is a central urea cycle enzyme, and the metal manganese (Mn) is an essential cofactor. Deficient biological responses to Mn, and reduced Mn accumulation have been observed in HD striatal mouse and cell models. Here we report in vivo and ex vivo evidence of a urea cycle metabolic phenotype in a prodromal HD mouse model. Further, either in vivo or in vitro Mn supplementation reverses the urea-cycle pathology by restoring arginase activity. We show that Arginase 2 (ARG2) is the arginase enzyme present in these mouse brain models, with ARG2 protein levels directly increased by Mn exposure. ARG2 protein is not reduced in the prodromal stage, though enzyme activity is reduced, indicating that altered Mn bioavailability as a cofactor leads to the deficient enzymatic activity. These data support a hypothesis that mutant HTT leads to a selective deficiency of neuronal Mn at an early disease stage, contributing to HD striatal urea-cycle pathophysiology through an effect on arginase activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.