Sirtuin 1 (SIRT1) is known to deacetylate histones and non-histone proteins including transcription factors thereby regulating metabolism, stress resistance, cellular survival, cellular senescence/aging, inflammation-immune function, and endothelial functions, and circadian rhythms. Naturally occurring dietary polyphenols, such as resveratrol, curcumin, quercetin, and catechins, have antioxidant and anti-inflammatory properties via modulating different pathways, such as NF-κB-and mitogen activated protein kinase-dependent signaling pathways. In addition, these polyphenols have also been shown to activate SIRT1 directly or indirectly in a variety of models. Therefore, activation of SIRT1 by polyphenols is beneficial for regulation of calorie restriction, oxidative stress, inflammation, cellular senescence, autophagy/apoptosis, autoimmunity, metabolism, adipogenesis, circadian rhythm, skeletal muscle function, mitochondria biogenesis and endothelial dysfunction. In this review, we describe the regulation of SIRT1 by dietary polyphenols in various cellular functions in response to environmental and pro-inflammatory stimuli.
The understanding of manganese (Mn) biology, in particular its cellular regulation and role in neurological disease, is an area of expanding interest. Mn is an essential micronutrient that is required for the activity of a diverse set of enzymatic proteins (e.g., arginase and glutamine synthase). Although necessary for life, Mn is toxic in excess. Thus, maintaining appropriate levels of intracellular Mn is critical. Unlike other essential metals, cell-level homeostatic mechanisms of Mn have not been identified. In this review, we discuss common forms of Mn exposure, absorption, and transport via regulated uptake/exchange at the gut and blood-brain barrier and via biliary excretion. We present the current understanding of cellular uptake and efflux as well as subcellular storage and transport of Mn. In addition, we highlight the Mn-dependent and Mn-responsive pathways implicated in the growing evidence of its role in Parkinson's disease and Huntington's disease. We conclude with suggestions for future focuses of Mn health-related research.
Sirtuin1 (SIRT1) regulates inflammation, aging (lifespan and healthspan), calorie restriction/energetics, mitochondrial biogenesis, stress resistance, cellular senescence, endothelial functions, apoptosis/autophagy, and circadian rhythms through deacetylation of transcription factors and histones. SIRT1 level and activity are decreased in chronic inflammatory conditions and aging where oxidative stress occurs. SIRT1 is regulated by a NAD+-dependent DNA repair enzyme poly(ADP-ribose)-polymerase-1 (PARP-1), and subsequent NAD+ depletion by oxidative stresses may have consequent effects on inflammatory and stress responses as well as cellular senescence. SIRT1 has been shown to undergo covalent oxidative modifications by cigarette smoke-derived oxidants/aldehydes, leading to post-translational modifications, inactivation, and protein degradation. Furthermore, oxidant/carbonyl stress-mediated reduction of SIRT1 leads to the loss of its control on acetylation of target proteins including p53, RelA/p65 and FOXO3, thereby enhancing the inflammatory, pro-senescent and apoptotic responses, as well as endothelial dysfunction. In this review, the mechanisms of cigarette smoke/oxidant-mediated redox post-translational modifications of SIRT1 and its role in PARP1, NF-κB activation, FOXO3 and eNOS regulation, as well as chromatin remodeling/histone modifications during inflammaging are discussed. Furthermore, we also discussed various novel ways to activate SIRT1 either directly or indirectly, which may have therapeutic potential in attenuating inflammation and premature senescence involved in chronic lung diseases.
Nuclear erythroid-related factor 2 (Nrf2), a redox-sensitive transcription factor, is involved in transcriptional regulation of many antioxidant genes, including glutamate-cysteine ligase (GCL). Cigarette smoke (CS) is known to cause oxidative stress and deplete glutathione (GSH) levels in alveolar epithelial cells. We hypothesized that resveratrol, a polyphenolic phytoalexin, has antioxidant signaling properties by inducing GSH biosynthesis via the activation of Nrf2 and protects lung epithelial cells against CS-mediated oxidative stress. Treatment of human primary small airway epithelial and human alveolar epithelial (A549) cells with CS extract (CSE) dose dependently decreased GSH levels and GCL activity, effects that were associated with enhanced production of reactive oxygen species. Resveratrol restored CSE-depleted GSH levels by upregulation of GCL via activation of Nrf2 and also quenched CSE-induced release of reactive oxygen species. Interestingly, CSE failed to induce nuclear translocation of Nrf2 in A549 and small airway epithelial cells. On the contrary, Nrf2 was localized in the cytosol of alveolar and airway epithelial cells due to CSE-mediated posttranslational modifications such as aldehyde/carbonyl adduct formation and nitration. On the other hand, resveratrol attenuated CSE-mediated Nrf2 modifications, thereby inducing its nuclear translocation associated with GCL gene transcription, as demonstrated by GCL-promoter reporter and Nrf2 small interfering RNA approaches. Thus resveratrol attenuates CSE-mediated GSH depletion by inducing GSH synthesis and protects epithelial cells by reversing CSE-induced posttranslational modifications of Nrf2. These data may have implications in dietary modulation of antioxidants in treatment of chronic obstructive pulmonary disease.
Sirtuin1 (SIRT1) deacetylase levels are decreased in chronic inflammatory conditions and aging where oxidative stress occurs. We determined the mechanism of SIRT1 redox post-translational modifications leading to its degradation. Human lung epithelial cells exposed to hydrogen peroxide (150-250 microM), aldehyde-acrolein (10-30 microM), and cigarette smoke extract (CSE; 0.1-1.5%) in the presence of intracellular glutathione-modulating agents at 1-24 h, and oxidative post-translational modifications were assayed in cells, as well as in lungs of mice lacking and overexpressing glutaredoxin-1 (Glrx1), and wild-type (WT) mice in response to cigarette smoke (CS). CSE and aldehydes dose and time dependently decreased SIRT1 protein levels, with EC(50) of 1% for CSE and 30 microM for acrolein at 6 h, and >80% inhibition at 24 h with CSE, which was regulated by modulation of intracellular thiol status of the cells. CS decreased the lung levels of SIRT1 in WT mice, which was enhanced by deficiency of Glrx1 and prevented by overexpression of Glrx1. Oxidants, aldehydes, and CS induced carbonyl modifications on SIRT1 on cysteine residues concomitant with decreased SIRT1 activity. Proteomics studies revealed alkylation of cysteine residue on SIRT1. Our data suggest that oxidants/aldehydes covalently modify SIRT1, decreasing enzymatic activity and marking the protein for proteasomal degradation, which has implications in inflammatory conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.