Natural resource managers use data on the spatial range of species to guide management decisions. These data come from survey or monitoring efforts that use a wide variety of tools. Environmental DNA (eDNA) is a surveillance tool that uses genetic markers for detecting species and holds potential as a tool for large‐scale monitoring programs. Two challenges of eDNA‐based studies are uncertainties created by imperfect capture of eDNA in collection samples (e.g., water field samples) and imperfect detection of eDNA using molecular methods (e.g., quantitative PCR). Occurrence models can be used to address these challenges, thus we use an occurrence model to address two objectives: first, to determine how many samples were required to detect species using eDNA; second, to examine when and where to take samples. We collected water samples from three different habitat types in the Upper Mississippi River when both Bighead Carp and Silver Carp were known to be present based on telemetry detections. Each habitat type (backwater, tributary, and impoundment) was sampled during April, May, and November. Detections of eDNA for both species varied across sites and months, but were generally low, 0–19.3% of samples were positive for eDNA. Overall, we found that eDNA‐based sampling holds promise to be a powerful monitoring tool for resource managers; however, limitations of eDNA‐based sampling include different biological and ecological characteristics of target species such as seasonal habitat usage patterns as well as aspects of different physical environments that impact the implementation of these methods such as water temperature.
Harvest regulations for Black Crappie Pomoxis nigromaculatus and Yellow Perch Perca flavescens in the northern USA and Canada have not been thoroughly evaluated, and specific guidance regarding where minimum length limits (MLLs) might improve these fisheries is lacking. We examined whether: (1) transitioning from an aggregate statewide daily creel limit of 25 panfish to species‐specific daily creel limits of <25 fish or implementing statewide MLLs could reduce harvest of Black Crappie and Yellow Perch in Wisconsin by ≥25%, and (2) MLLs would improve yield by ≥10% and mean TL of harvested fish by ≥25 mm in Wisconsin fisheries. Creel surveys indicated that ≥94% of Wisconsin anglers did not harvest a Black Crappie or Yellow Perch, and ≤0.12% of anglers harvested a daily creel limit of 25 fish. Daily creel limits would need to be ≤7 fish/ angler to reduce harvest by ≥25%. Statewide MLLs would need to be ≥229 mm for Black Crappie and ≥203 mm for Yellow Perch to reduce harvest by ≥25%, but predicted responses to MLLs varied among simulated populations. In general, MLLs were not predicted to improve yield, indicating that growth overfishing was not a widespread problem. Minimum length limits could improve mean TL of harvested fish, but increases ≥25 mm were only observed under 254‐mm and 279‐mm MLLs, and anglers would have to accept predicted reductions in harvest of ≥30% to achieve these improvements. A 229‐mm MLL offered a more equitable trade‐off between increases in mean TLs of harvested fish (11–21‐mm improvements) and reductions in harvest (22–37% reductions). Our modeling provides a framework for managers to make more informed decisions regarding harvest regulations, but more information regarding angler preferences is needed for selecting appropriate management objectives and harvest regulations.Received June 11, 2014; accepted September 4, 2014
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.