We study the photon-statistical behavior of resonance fluorescence from self-assembled InAs quantum dots (QDs) as a function of the density of free charge carriers introduced by an above band-gap laser. Second-order correlation measurements show bunching behavior that changes with aboveband laser power and is absent in purely above-band excited emission. Resonant photoluminescence excitation spectra indicate that the QD experiences discrete spectral shifts and continuous drift due to changes in the local charge environment. These spectral changes, combined with tunneling of charges from the environment to the QD, provide an explanation of the bunching observed in the correlations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.