A newly isolated thermophilic fungus was found to produce a partially inducible extracellular DNase. This manuscript focuses on the characterization of this novel thermophilic DNase in terms of optimal enzyme conditions, molecular weight, and certain kinetic properties. The DNase was found to be inactivated by the presence of EDTA demonstrating its dependence on metal cofactors for activity. Maximum activity occurred at pH 6.0 with no activity at pH 2.0 or 10.0. The optimal temperature for the purified DNase was 65 °C. The thermophilic DNase was found to be an exonuclease with an estimated molecular weight of 56 kDa.
A membrane based affinity purification system was developed for the purification of the DNA specific nuclease, DNase I. Single stranded DNA was bound to unmodified polyvinylidene fluoride (PVDF) membranes which were used to purify DNase I from a solution of bovine serum albumin. Using coated membranes, a 6-fold increase in specific activity was achieved with 80 % enzyme recovery. This method provides a simple yet effective way to purify DNase I and can be very useful for the purification of other DNA specific enzymes.
Biofilms are a heterogenous complex community of vegetative cells and extracellular polymeric substances that can adhere to various surfaces and are responsible for a variety of chronic and acute diseases. The impact of bacterial biofilms on oral and intestinal health is well studied, but the correlation and causations of biofilms and neurodegenerative diseases are still in their infancy. However, the correlations between biofilms and diseases such as Alzheimer’s Disease, Multiple Sclerosis, and even Parkinson’s Disease are starting to demonstrate the role bacterial biofilms have in promoting and exasperating various illnesses. The review article provides insight into the role bacterial biofilms may have on the development and progression of various neurodegenerative diseases and hopefully shine a light on this very important area of research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.