The resolution of microsphere-based nanoscopy is studied using fluorescently labeled nanospheres and F-actin protein filaments with the emission coupled to the localized surface plasmon resonances in the underlying Au nanodisk arrays. Virtual imaging is performed through high-index microspheres embedded in plastic coverslips placed in contact with the nanoscale objects. For 150 and 200 nm periods of nanoplasmonic arrays, the imaging has a solid immersion lens-limited resolution, whereas for shorter periods of 80 and 100 nm, the resolution was found to increase up to ∼λ/7, where λ is the emission wavelength. The results cannot be interpreted within a framework of a regular localized plasmonic structured illumination microscopy since the array period was significantly shorter than the wavelength and postimaging processing was not used. It is hypothesized that the observed super-resolution is based on coupling of the emission of nanoscale objects to strongly localized near-field maxima in the adjacent plasmonic metasurfaces followed by evanescent coupling to high-index microspheres.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.