The resolution of microsphere-based nanoscopy is studied using fluorescently labeled nanospheres and F-actin protein filaments with the emission coupled to the localized surface plasmon resonances in the underlying Au nanodisk arrays. Virtual imaging is performed through high-index microspheres embedded in plastic coverslips placed in contact with the nanoscale objects. For 150 and 200 nm periods of nanoplasmonic arrays, the imaging has a solid immersion lens-limited resolution, whereas for shorter periods of 80 and 100 nm, the resolution was found to increase up to ∼λ/7, where λ is the emission wavelength. The results cannot be interpreted within a framework of a regular localized plasmonic structured illumination microscopy since the array period was significantly shorter than the wavelength and postimaging processing was not used. It is hypothesized that the observed super-resolution is based on coupling of the emission of nanoscale objects to strongly localized near-field maxima in the adjacent plasmonic metasurfaces followed by evanescent coupling to high-index microspheres.
We propose in this paper a globally numerical method to solve a phaseless coefficient inverse problem: how to reconstruct the spatially distributed refractive index of scatterers from the intensity (modulus square) of the full complex valued wave field at an array of light detectors located on a measurement board. The propagation of the wave field is governed by the 3D Helmholtz equation. Our method consists of two stages. On the first stage, we use asymptotic analysis to obtain an upper estimate for the modulus of the scattered wave field. This estimate allows us to approximately reconstruct the wave field at the measurement board using an inversion formula. This reduces the phaseless inverse scattering problem to the phased one. At the second stage, we apply a recently developed globally convergent numerical method to reconstruct the desired refractive index from the total wave obtained at the first stage. Unlike the optimization approach, the two-stage method described above is global in the sense that it does not require a good initial guess of the true solution. We test our numerical method on both computationally simulated and experimental data. Although experimental data are noisy, our method produces quite accurate numerical results.
One of the trends in design of mid-wave infrared (MWIR) focal plane arrays (FPAs) consists in reduction of the pixel sizes which allows increasing the resolution and decreasing the dark currents of FPAs. To keep high light collection efficiency and to combine it with large angle-of-view (AOV) of FPAs, in this work we propose to use photonic jets produced by the dielectric microspheres for focusing and highly efficient coupling light into individual photodetector mesas. In this approach, each pixel of FPA is integrated with the appropriately designed, fixed and properly aligned microsphere. The tasks consist in developing technology of integration of microspheres with pixels on a massive scale and in developing designs of corresponding structures. We propose to use air suction through a microhole array for assembling ordered arrays of microspheres. We demonstrate that this technology allows obtaining large-scale arrays containing thousands of microspheres with ~1% defect rate which represents a clear advantage over the best results obtained by the techniques of directed self-assembly. We optimized the designs of such FPAs integrated with microspheres for achieving maximal angle of view (AOV) as a function of the index of refraction and diameter of the microspheres. Using simplified two-dimensional finite difference time domain (FDTD) modeling we designed structures where the microspheres are partly-immersed in a layer of photoresist or slightly truncated by using controllable temperature melting effects. Compared to the standard microlens arrays, our designs provide up to an order of magnitude higher AOVs reaching ~8° for back-illuminated and ~20° for front-illuminated structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.