Cell walls were isolated from the mesocarp of grape (Vitis vinifera L.) berries at developmental stages from before veraison through to the final ripe berry. Fluorescence and light microscopy of intact berries revealed no measurable change in cell wall thickness as the mesocarp cells expanded in the ripening fruit. Isolated walls were analyzed for their protein contents and amino acid compositions, and for changes in the composition and solubility of constituent polysaccharides during development. Increases in protein content after veraison were accompanied by an approximate 3-fold increase in hydroxyproline content. The type I arabinogalactan content of the pectic polysaccharides decreased from approximately 20 mol % of total wall polysaccharides to about 4 mol % of wall polysaccharides during berry development. Galacturonan content increased from 26 to 41 mol % of wall polysaccharides, and the galacturonan appeared to become more soluble as ripening progressed. After an initial decrease in the degree of esterification of pectic polysaccharides, no further changes were observed nor were there large variations in cellulose (30-35 mol % of wall polysaccharides) or xyloglucan (approximately 10 mol % of wall polysaccharides) contents. Overall, the results indicate that no major changes in cell wall polysaccharide composition occurred during softening of ripening grape berries, but that significant modification of specific polysaccharide components were observed, together with large changes in protein composition.
During ripening of grape (Vitis vinifera L.) berries, softening occurs concomitantly with the second growth phase of the fruit and involves significant changes in the properties of cell wall polysaccharides. Here, the activities of enzymes that might participate in cell wall modification have been monitored throughout berry development. Alpha-galactosidase (EC 3.2.1.22), beta-galactosidase (EC 3.2.1.23) and pectin methylesterase (EC 3.1.1.11) activities were present, but no polygalacturonase (EC 3.2.1.15), cellulase (EC 3.2.1.4), xyloglucanase (xyloglucan-specific cellulase EC 3.2.1.4) or galactanase (EC 3.2.1.89) could be detected. The accumulation of mRNAs encoding wall-modifying enzymes was examined by northern hybridization analysis. Transcripts for beta-galactosidase, pectin methylesterase, polygalacturonase, pectate lyase (EC 4.2.2.2) and xyloglucan endotransglycosylase (EC 2.4.1.207) were present during ripening, although polygalacturonase activity had not been detected in berry extracts. Cellulases could not be detected in ripening berries, either at the enzyme or mRNA levels. The increase in beta-galactosidase activity and mRNA is consistent with the observed decrease in type-I arabinogalactan content of the walls during ripening, and the detection of polygalacturonase and pectate lyase mRNAs might explain the increased solubility of galacturonan in walls of ripening grapes. Thus, the modification of cell wall polysaccharides during softening of grape berries is a complex process involving subtle changes to different components of the wall, and in many cases only small amounts of enzyme activity are required to effect these changes.
Cell walls have been isolated from the mesocarp of mature grape (Vitis vinifera L.) berries. Tissue homogenates were suspended in 80% (v/v) ethanol to minimise the loss of water-soluble wall components and wet-sieved on nylon mesh to remove cytoplasmic material. The cell wall fragments retained on the sieve were subsequently treated with buered phenol at pH 7.0, to inactivate any wall-bound enzymes and to dislodge small amounts of cytoplasmic proteins that adhered to the walls. Finally, the wall preparation was washed with chloroform/methanol (1:1, v/v) to remove lipids and dried by solvent exchange. Scanning electron microscopy showed that the wall preparation was essentially free of vascular tissue and adventitious protein of cytoplasmic origin. Compositional analysis showed that the walls consisted of approximately 90% by weight of polysaccharide and less than 10% protein. The protein component of the walls was shown to be rich in arginine and hydroxyproline residues. Cellulose and polygalacturonans were the major constituents, and each accounted for 30±40% by weight of the polysaccharide component of the walls. Substantial varietal dierences were observed in the relative abundance of these two polysaccharides. Xyloglucans constituted approximately 10% of the polysaccharide fraction and the remainder was made up of smaller amounts of mannans, heteroxylans, arabinans and galactans.
The biosynthesis of polysaccharides destined for the plant cell wall and the subsequent assembly of the cell wall are poorly understood processes that are currently the focus of much research. Arabinan, a component of the pectic polysaccharide rhamnogalacturonan I, is composed of arabinosyl residues connected via various glycosidic linkages, and therefore, the biosynthesis of arabinan is likely to involve more than one arabinosyltransferase. We have studied the transfer of [ 14 C]arabinose (Ara) from UDP-l-arabinopyranose onto polysaccharides using microsomal membranes isolated from mung bean (Vigna radiata) hypocotyls. [ 14 C]arabinosyl and [ 14 C]xylosyl residues were incorporated into endogenous products due to the presence of UDP-Xyl-4-epimerase activity. Enzymatic digestion of endogenous products with endo-arabinanase released very little radiolabeled sugars, whereas digestion with arabinofuranosidase released some [ 14 C]Ara. Microsomal membranes solubilized with the detergent octyl glucoside were able to add a single [ 14 C]Ara residue onto (135)-linked ␣-l-arabino-oligosaccharide acceptors. The reaction had a pH optimum of 6.5 and a requirement for manganese ions. However, enzymatic digestion of the radiolabeled oligosaccharides with endo-arabinanase and arabinofuranosidases could not fully release the radiolabeled Ara residue, indicating that the [ 14 C]Ara residue was not a (132)-, (133)-, or (135)-linked ␣-l-arabinofuranosyl residue. Rather, mild acid treatment of the product suggested that the radiolabeled Ara residue was in a pyranose conformation, and this result was confirmed by thin-layer chromatography of radiolabeled partially methylated sugars. Using microsomal membranes separated on a discontinuous sucrose gradient, the arabinosyltransferase activity appears to be mainly localized to Golgi membranes.Pectic polysaccharides are major components of primary plant cell walls and middle lamella. Three main types of pectic polysaccharides have been identified, homogalacturonan, rhamnogalacturonan I (RG I), and rhamnogalacturonan II (RG II). RG I is composed of a backbone of alternating [34-␣-d-GalA-(132)-␣-l-Rha- (13] in which some of the rhamnose residues are substituted with complex side chains containing Ara and Gal residues. The composition and size of these side chains varies depending on the plant species, tissue type, and stage of development (O'Neill et al., 1990;Carpita and Gibeaut, 1993). In general, the arabinan side chains consist of a linear chain of (135)-linked ␣-l-arabinofuranosyl residues that may be substituted at the O-3 and/or O-2 with additional arabinofuranosyl residues (Carpita and Gibeaut, 1993;Schols and Voragen, 2002).The study of the biosynthesis of plant cell wall polysaccharides in plants is a growing field, but to date, very few genes encoding glycosyltransferases have been characterized (Edwards et al., 1999;Perrin et al., 1999;Faik et al., 2002). Notably, many different transferases must be involved in pectin biosynthesis, but until very recently, none had been isola...
Cell walls have been isolated from the mesocarp of mature grape (Vitis vinifera L.) berries. Tissue homogenates were suspended in 80% (v/v) ethanol to minimise the loss of water-soluble wall components and wet-sieved on nylon mesh to remove cytoplasmic material. The cell wall fragments retained on the sieve were subsequently treated with buered phenol at pH 7.0, to inactivate any wall-bound enzymes and to dislodge small amounts of cytoplasmic proteins that adhered to the walls. Finally, the wall preparation was washed with chloroform/methanol (1:1, v/v) to remove lipids and dried by solvent exchange. Scanning electron microscopy showed that the wall preparation was essentially free of vascular tissue and adventitious protein of cytoplasmic origin. Compositional analysis showed that the walls consisted of approximately 90% by weight of polysaccharide and less than 10% protein. The protein component of the walls was shown to be rich in arginine and hydroxyproline residues. Cellulose and polygalacturonans were the major constituents, and each accounted for 30±40% by weight of the polysaccharide component of the walls. Substantial varietal dierences were observed in the relative abundance of these two polysaccharides. Xyloglucans constituted approximately 10% of the polysaccharide fraction and the remainder was made up of smaller amounts of mannans, heteroxylans, arabinans and galactans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.