Predictive models are central to many scientific disciplines and vital for informing management in a rapidly changing world. However, limited understanding of the accuracy and precision of models transferred to novel conditions (their 'transferability') undermines confidence in their predictions. Here, 50 experts identified priority knowledge gaps which, if filled, will most improve model transfers. These are summarized into six technical and six fundamental challenges, which underlie the combined need to intensify research on the determinants of ecological predictability, including species traits and data quality, and develop best practices for transferring models. Of high importance is the identification of a widely applicable set of transferability metrics, with appropriate tools to quantify the sources and impacts of prediction uncertainty under novel conditions. Predicting the UnknownPredictions facilitate the formulation of quantitative, testable hypotheses that can be refined and validated empirically [1]. Predictive models have thus become ubiquitous in numerous scientific disciplines, including ecology [2], where they provide means for mapping species distributions, explaining population trends, or quantifying the risks of biological invasions and disease outbreaks (e.g., [3,4]). The practical value of predictive models in supporting policy and decision making has therefore grown rapidly (Box 1) [5]. With that has come an increasing desire to predict (see Glossary) the state of ecological features (e.g., species, habitats) and our likely impacts upon them [5], prompting a shift from explanatory models to anticipatory predictions [2]. However, in many situations, severe data deficiencies preclude the development of specific models, and the collection of new data can be prohibitively costly or simply impossible [6]. It is in this context that interest in transferable models (i.e., those that can be legitimately projected beyond the spatial and temporal bounds of their underlying data [7]) has grown.Transferred models must balance the tradeoff between estimation and prediction bias and variance (homogenization versus nontransferability, sensu [8]). Ultimately, models that can Highlights Models transferred to novel conditions could provide predictions in data-poor scenarios, contributing to more informed management decisions.The determinants of ecological predictability are, however, still insufficiently understood.Predictions from transferred ecological models are affected by species' traits, sampling biases, biotic interactions, nonstationarity, and the degree of environmental dissimilarity between reference and target systems.We synthesize six technical and six fundamental challenges that, if resolved, will catalyze practical and conceptual advances in model transfers.We propose that the most immediate obstacle to improving understanding lies in the absence of a widely applicable set of metrics for assessing transferability, and that encouraging the development of models grounded in well-established mech...
Dynamic management approaches protect endangered bycatch species but with much greater efficiency than existing static closures.
Overfishing is arguably the greatest ecological threat facing the oceans, yet catches of many highly migratory fishes including oceanic sharks remain largely unregulated with poor monitoring and data reporting. Oceanic shark conservation is hampered by basic knowledge gaps about where sharks aggregate across population ranges and precisely where they overlap with fishers. Using satellite tracking data from six shark species across the North Atlantic, we show that pelagic sharks occupy predictable habitat hotspots of high space use. Movement modeling showed sharks preferred habitats characterized by strong sea surface-temperature gradients (fronts) over other available habitats. However, simultaneous Global Positioning System (GPS) tracking of the entire Spanish and Portuguese longline-vessel fishing fleets show an 80% overlap of fished areas with hotspots, potentially increasing shark susceptibility to fishing exploitation. Regions of high overlap between oceanic tagged sharks and longliners included the North Atlantic Current/Labrador Current convergence zone and the Mid-Atlantic Ridge southwest of the Azores. In these main regions, and subareas within them, shark/vessel co-occurrence was spatially and temporally persistent between years, highlighting how broadly the fishing exploitation efficiently "tracks" oceanic sharks within their space-use hotspots year-round. Given this intense focus of longliners on shark hotspots, our study argues the need for international catch limits for pelagic sharks and identifies a future role of combining fine-scale fish and vessel telemetry to inform the ocean-scale management of fisheries.animal telemetry | distribution | conservation | fisheries | predator-prey O ceanic pelagic sharks are iconic top predators with relatively low resilience to exploitation (1-3), yet many tens of millions of individuals are caught each year by high-seas fisheries (2) with significant reductions in catch rates documented for many species (4-6). This level of exploitation is especially problematic because the harvest of oceanic sharks remains largely unregulated (2, 7). For the majority of shark species that make up more than 95% of oceanic shark catches, no international or bilateral harvest limits have been imposed (2, 7). Consequently, analysis indicates that extinction risk in oceanic and coastal sharks and rays is higher than for most other vertebrates (3). Accordingly, there is a critical need and concern for improved management and conservation of oceanic sharks.Management action for oceanic sharks such as catch quotas, size limits, and/or area closures (i.e., marine protected areas, MPAs) is hampered by a paucity of high-quality data on total catches, landings, species identification, catch locations, and the susceptibility of sharks to fisheries (2, 4, 7). In addition, poor recordkeeping, a lack of reporting or deliberate underreporting of pelagic shark catches by the high seas longlining fleet and/or fishing nations (7), contributes to poor data quality that can lead to increased unce...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.