Decision-making in the early stage of a project has a significant impact on the project. However, limited and uncertain information on the project and a complex correlation among various factors that affect the project's construction duration and cost, make it difficult to predict and manage the project. Therefore, this study developed a case-based reasoning (CBR)-based hybrid model with which to predict the construction duration and cost of a project in its early stage. One hundred and one cases among multi-family housing projects that were completed between 2000 and 2005 were used. The CBR-based hybrid model developed in this study is the result of integrating the advantages of (i) prediction methodologies, such as case-based reasoning, multiple regression analysis, and artificial neural networks, (ii) the optimization process using a genetic algorithm, and (iii) the probability distribution and the analysis process of outlier using Monte-Carlo simulation. The results of this study are expected to support the owners and managers who are in charge of estimating budget and construction duration in both public and private sectors, in predicting accurately the construction duration and cost at the business planning or early stage of a project.
Résumé: La prise de décision lors des premières étapes d'un projet a un impact important sur le projet. Toutefois, une information incertaine et limitée sur le projet et une corrélation complexe sont certains facteurs qui affectent la durée et le coût de construction du projet, rendant difficile de prévoir et de gérer le projet. La présente étude a donc développé un modèle hybride basé sur une approche individualizée pour prédire la durée et le coût de construction d'un projet dans les premières étapes. Cent-un (101) cas de projets de logements collectifs complétés entre 2000 et 2005 ont été utilisés. Le modèle hybride basé sur une approche individualizée développé dans cette étude découle de l'intégration des avantages des (i) méthodes de prévision, telles que l'approche individualizée, l'analyse de régression multiple et les réseaux neuronaux artificiels, (ii) le processus d'optimisation utilisant un algorithme génétique et (iii) la distribution de probabilité et le processus d'analyse des aberrants en utilisant la simulation de Monte Carlo. Les résultats devraient aider les propriétaires et les gérants en charge de l'estimation du budget et de la durée de construction dans les secteurs public et privé à prévoir plus précisément la durée et le coût de construction lors de la planification des activités ou lors des premières étapes d'un projet.
In developing an intelligent mobile construction robot, a navigation system that can provide an effective and efficient path-planning algorithm is a very important element. The purpose of a path-planning method for a mobile construction robot is to find a continuous collision-free path from the initial position of the construction robot to its target position. This paper presents an improved Bug-based algorithm, called SensBug, which can produce an effective path in an unknown environment with both stationary and movable obstacles. The contributions, which make it possible to generate an effective and short path, are an improved method to select local directions, a reverse mode, and a simple leaving condition. Some emerging technologies that can be used for implementing an intelligent construction robot are introduced in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.