BackgroundBiological applications of nanoparticles are rapidly increasing, which introduces new possibilities to improve the efficacy of radiotherapy. Here, we synthesized titanium peroxide nanoparticles (TiOxNPs) and investigated their efficacy as novel agents that can potently enhance the effects of radiation in the treatment of pancreatic cancer.MethodsTiOxNPs and polyacrylic acid-modified TiOxNPs (PAA-TiOxNPs) were synthesized from anatase-type titanium dioxide nanoparticles (TiO2NPs). The size and morphology of the PAA-TiOxNPs was evaluated using transmission electron microscopy and dynamic light scattering. The crystalline structures of the TiO2NPs and PAA-TiOxNPs with and without X-ray irradiation were analyzed using X-ray absorption. The ability of TiOxNPs and PAA-TiOxNPs to produce reactive oxygen species in response to X-ray irradiation was evaluated in a cell-free system and confirmed by flow cytometric analysis in vitro. DNA damage after X-ray exposure with or without PAA-TiOxNPs was assessed by immunohistochemical analysis of γ-H2AX foci formation in vitro and in vivo. Cytotoxicity was evaluated by a colony forming assay in vitro. Xenografts were prepared using human pancreatic cancer MIAPaCa-2 cells and used to evaluate the inhibition of tumor growth caused by X-ray exposure, PAA-TiOxNPs, and the combination of the two.ResultsThe core structures of the PAA-TiOxNPs were found to be of the anatase type. The TiOxNPs and PAA-TiOxNPs showed a distinct ability to produce hydroxyl radicals in response to X-ray irradiation in a dose- and concentration-dependent manner, whereas the TiO2NPs did not. At the highest concentration of TiOxNPs, the amount of hydroxyl radicals increased by >8.5-fold following treatment with 30 Gy of radiation. The absorption of PAA-TiOxNPs enhanced DNA damage and resulted in higher cytotoxicity in response to X-ray irradiation in vitro. The combination of the PAA-TiOxNPs and X-ray irradiation induced significantly stronger tumor growth inhibition compared to treatment with either PAA-TiOxNPs or X-ray alone (p < 0.05). No apparent toxicity or weight loss was observed for 43 days after irradiation.ConclusionsTiOxNPs are potential agents for enhancing the effects of radiation on pancreatic cancer and act via hydroxyl radical production; owing to this ability, they can be used for pancreatic cancer therapy in the future.Electronic supplementary materialThe online version of this article (doi:10.1186/s13014-016-0666-y) contains supplementary material, which is available to authorized users.
The molecular mechanism by which cAMP activates the rat phenylethanolamine N-methyltransferase (PNMT) gene was examined by transient transfection of the wild-type rat PNMT promoter-luciferase reporter gene construct pGL3RP893 into PC12 cells. Forskolin treatment (10 mM) of the transfected cells for 3±6 h maximally induced luciferase threefold. Induction by forskolin was mimicked by the cAMP analog, 8-Br-cAMP, and prevented in PC12 cells pretreated with the protein kinase A (PKA) inhibitor H-89 or co-transfected with an expression construct for PKI, a polypeptide inhibitor of PKA. Furthermore, forskolin did not activate the PNMT promoter when the 893 bp PNMT promoter-reporter gene construct was transfected into the PKA-de®cient cell line, A126. Detailed examination of the forskolin responsiveness of PNMT constructs harboring $ 60 bp and , 893 bp of PNMT promoter demonstrated that the cAMP-responsive element(s) lay between , 392 bp and $60 bp. Within this region of the promoter lies a functional binding element for Egr-1, a transcriptional activator of the PNMT gene. Forskolin treatment of PC12 cells also rapidly increased nuclear levels of Egr-1 and the catalytic subunit of PKA (PKA-C), with the rise in PKA-C preceding that of Egr-1. Mutation of the 2165 bp Egr-1 site markedly decreased forskolin activation of the PNMT promoter. These ®ndings demonstrate that the rat PNMT gene promoter can be activated via the cAMP±PKA signal transduction pathway, mediated by the immediate early gene transcription factor, Egr-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.