Carboxypeptidase R (EC 3.4.17.20; CPR) and carboxypeptidase N (EC 3.4.17.3; CPN) cleave carboxyl-terminal arginine and lysine residues from biologically active peptides such as kinins and anaphylatoxins, resulting in regulation of their biological activity. Human proCPR, also known as thrombin-activatable fibrinolysis inhibitor, plasma pro-carboxypeptidase B, and pro-carboxypeptidase U, is a plasma zymogen activated during coagulation. CPN, however, previously termed kininase I and anaphylatoxin inactivator, is present in a stable active form in plasma. We report here the isolation of mouse proCPR and CPN cDNA clones that can induce their respective enzymatic activities in culture supernatants of transiently transfected cells. Potato carboxypeptidase inhibitor can inhibit carboxypeptidase activity in culture medium of mouse proCPR-transfected cells. The expression of proCPR mRNA in murine liver is greatly enhanced following LPS injection, whereas CPN mRNA expression remains unaffected. Furthermore, the CPR activity in plasma increased 2-fold at 24 h after LPS treatment. Therefore, proCPR can be considered a type of acute phase protein, whereas CPN is not. An increase in CPR activity may facilitate rapid inactivation of inflammatory mediators generated at the site of Gram-negative bacterial infection and may consequently prevent septic shock. In view of the ability of proCPR to also inhibit fibrinolysis, an excess of proCPR induced by LPS may contribute to hypofibrinolysis in patients suffering from disseminated intravascular coagulation caused by sepsis.
There are two types of carboxypeptidases present in human blood, carboxypeptidase N (CPN) and arginine carboxypeptidase (CPR). CPR is generated during coagulation from a precursor (proCPR) which can be converted to the active form by trypsin in vitro. Since it is difficult to distinguish the two types of carboxypeptidases in human blood by the measurement of enzyme activity, we established a quantitative sandwich ELISA by which CPR can be quantitated. The amount of CPR in plasma, fresh serum and heated serum were essentially the same. Therefore the ELISA assay does not distinguish proCPR, activated CPR and inactivated CPR. With the ELISA method, CPR was quantitated in plasma from fifty patients with rheumatoid arthritis and eleven patients with severe hepatitis as well as healthy individuals. The amount of CPR in plasma obtained from patients with rheumatoid arthritis was not found to be lower than that of normal subjects. Furthermore, the patients who suffered severe hepatitis and had very low levels of CPR-total were fatal. This suggests that a decrease of CPR level might be a good indication of a patient's prognosis to death by hepatitis.
Carboxypeptidases (CP) in plasma and sera serve as regulators of anaphylatoxins such as C3a and C5a. The activity of CP can be measured by determining hippuric acid after cleavage of the small synthetic substrate hippuryl‐l‐arginine. Although a colorimetric assay is convenient for determining hippuric acid generated by CP, we noticed that some anticoagulants, such as citrate, interfere with the color development of the reagents used. EDTA and heparin provide an appropriate value. EGTA used as anticoagulant also provides an appropriate value. Therefore, concentration of citrate in samples should be controlled to be constant for background subtraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.